939 resultados para COOLING
Resumo:
A dynamic crystallization study was undertaken to provide a framework for linking the textural variations observed in the Hole 648B lavas with the size and morphology of cooling units inferred from drilling and submersible observation. The textures produced in cooling rate experiments carried out using a Serocki lava (ALV-1690-20) are comparable to the groundmass textural characteristics of lavas from Serocki volcano. The results of the dynamic crystallization study provide a quantitative link between texture, cooling rate, and eruption temperature. The maximum half-width of cooling units estimated from textural characteristics is on the order of 3 m, a value consistent with constraints from drilling and submersible observation. Textural characteristics indicate that the temperature from which cooling began was slightly above the liquidus. The relation between cooling rate and texture are also tested on a drill core sample of basalt of similar composition from a 9-m-thick flow in DSDP Hole 396B.
Resumo:
Laboratory experiments show that undercooling to about -5°C occurs in colonized Beacon sandstones of the Ross Desert, Antarctica. High-frequency temperature oscillations between 5°C and -5°C or -10°C (which occur in nature on the rock surface) did not damage Hemichloris antarctica. In a cryomicroscope, H. antarctica appeared to be undamaged after slow or rapid cooling to -50°C. l4CO2 incorporation after freezing to -20°C was unaffected in H. antarctica or in Trebouxia sp. but slightly depressed in Stichococcus sp. (isolated from a less extreme Antarctic habitat). These results suggest that the freezing regime in the Antarctic desert is not injurious to endolithic algae. It is likely that the freezing-point depression inside the rock makes available liquid water for metabolic activity at subzero temperatures. Freezing may occur more frequently on the rock surface and contribute to the abiotic nature of the surface.
Resumo:
The effect of cooling rate on the microstructure of MAR-M247 Ni-based superalloy was investigated via physical simulation of the casting process. Solidification experiments with cooling rates in the range of 0.25–10 K/s showed smooth temperature profiles with measured cooling rates matching the set values. The MAR-M247 showed cellular (0.25 K/s) and dendritic (1, 5 and 10 K/s) microstructures. Microconstituents also varied with cooling rates: γ/γ′ matrix with carbides and γ/γ′ eutectic at 0.25 K/s, γ/γ′ matrix with carbides at 1 K/s, and γ/γ′ matrix with carbides and γ/MC eutectic at 5 and 10 K/s. Moreover, the secondary dendritic arm spacing decreased and the hardness increased with the increase in the cooling rates.