986 resultados para Burial.
Resumo:
In order to investigate how the population diversity at major Romano-British urban centres compared to small towns and military outposts, we conducted multi-isotope (carbon, nitrogen, oxygen and strontium) analyses of bones (42 individuals) and teeth (26 individuals) of human skeletons from Cataractonium/ Roman Catterick in North Yorkshire (U.K.). The results suggest a markedly less diverse population at Catterick than at the larger towns. Significant differences are observed between burials from the town and fort area and the suburb of Bainesse to the south, and it is suggested that these reflect a shift to more localised recruitment for the Roman army in the Late Roman period. Isotope data for the ‘Bainesse Eunuch’, an unusual 4th century burial that has been interpreted as the remains of a ‘transvestite’ priest of Cybele, are not ultimately conclusive but consistent with origins in Southern Britain or areas with a similar climate abroad. This paper also presents strontium isotope data for modern vegetation samples from 17 sites in the Catterick/northern Vale of York area which contribute to a continuing effort to map the biosphere 87Sr/86Sr variation in Britain.
Resumo:
Carbon and nitrogen stable isotope ratios were measured in 157 fish bone collagen samples from 15 different archaeological sites in Belgium which ranged in ages from the 3rd to the 18th c. AD. Due to diagenetic contamination of the burial environment, only 63 specimens produced results with suitable C:N ratios (2.9–3.6). The selected bones encompass a wide spectrum of freshwater, brackish, and marine taxa (N = 18), and this is reflected in the δ13C results (−28.2‰ to −12.9%). The freshwater fish have δ13C values that range from −28.2‰ to −20.2‰, while the marine fish cluster between −15.4‰ and −13.0‰. Eel, a catadromous species (mostly living in freshwater but migrating into the sea to spawn), plots between −24.1‰ and −17.7‰, and the anadromous fish (living in marine environments but migrating into freshwater to spawn) show a mix of freshwater and marine isotopic signatures. The δ15N results also have a large range (7.2‰ to 16.7‰) indicating that these fish were feeding at many different trophic levels in these diverse aquatic environments. The aim of this research is the isotopic characterization of archaeological fish species (ecology, trophic level, migration patterns) and to determine intra-species variation within and between fish populations differing in time and location. Due to the previous lack of archaeological fish isotope data from Northern Europe and Belgium in particular, these results serve as an important ecological backdrop for the future isotopic reconstruction of the diet of human populations dating from the historical period (1st and 2nd millennium AD), where there is zooarchaeological and historical evidence for an increased consumption of marine fish.
Resumo:
First discovered by accident in 1884 – and thereafter informally investigated by workmen, nuns and clergy, for several decades – the archaeological site at the Sisters of Nazareth convent in central Nazareth has remained unpublished and largely unknown to scholarship. However, work by the Nazareth Archaeological Project in 2006–10 showed that this site offers a full and important stratified sequence from ancient Nazareth, including well-preserved Early Roman-period and later features. These include a partially rock-cut structure, here re-evaluated and interpreted on the basis of both earlier and newly recorded data as a first-century ad domestic building – perhaps a ‘courtyard house’ – the first surface-built domestic structure of this date from Nazareth to be published, and the best preserved. The site was subsequently used in the Roman period for burial, suggesting settlement contraction or settlement shift.
Resumo:
Changes in the cultures and spaces of death during the Victorian era reveal the shifting conceptualisations and mobilisations of class in this period. Using the example of Brookwood Necropolis, established 1852 in response to the contemporary burial reform debate, the paper explores tensions within the sanitary reform movement, 1853–1903. Whilst reformist ideology grounded the cemetery's practices in a discourse of inclusion, one of the consequences of reform was to reinforce class distinctions. Combined with commercial imperatives and the modern impulse towards separation of living and dead, this aspect of reform enacted a counter-discourse of alienation. The presence of these conflicting strands in the spaces and practices of the Necropolis and their changes during the time period reflect wider urban trends.
Resumo:
Enhanced understanding of soil disturbance effects on weed seedling recruitment will help guide improved management approaches. Field experiments were conducted at 16 site-years at 10 research farms across Europe and North America to (i) quantify superficial soil disturbance (SSD) effects on Chenopodium album emergence and (ii) clarify adaptive emergence behaviour in frequently disturbed environments. Each site-year contained factorial combinations of two seed populations (local and common, with the common population studied at all site-years) and six SSD timings [0, 50, 100, 150, 200 day-degrees (d°C, base temperature 3°C) after first emergence from undisturbed soil]. Analytical units in this study were emergence flushes. Flush magnitudes (maximum weekly emergence per count flush) and flush frequencies (flushes year 1) were compared between disturbed and undisturbed seedbanks. One year after burial, SSD promoted seedling emergence relative to undisturbed seedbanks by increasing flush magnitude rather than increasing flush frequency. Two years after burial, SSD promoted emergence through increased flush magnitude and flush frequency. The promotional effects of SSD on emergence were strongest within 500 d°C following SSD; however, low levels of SSDinduced emergence were detected as late as 3000 d°C following SSD. Accordingly, stale seedbed practices that eliminate weed seedlings should occur within 500 d°C of disturbance, because few seedlings emerge after this time. However, implementation of stale seedbed practices will probably cause slight increases in weed population densities throughout the year. Compared with the common population, local populations exhibited reduced variance in total emergence measured within sites and across SSD treatments, suggesting that C. album adaptation to local pedo-climatic conditions involves increased consistency in SSD-induced emergence.
Resumo:
Artificial diagenesis of the intra-crystalline proteins isolated from Patella vulgata was induced by isothermal heating at 140 °C, 110 °C and 80 °C. Protein breakdown was quantified for multiple amino acids, measuring the extent of peptide bond hydrolysis, amino acid racemisation and decomposition. The patterns of diagenesis are complex; therefore the kinetic parameters of the main reactions were estimated by two different methods: 1) a well-established approach based on fitting mathematical expressions to the experimental data, e.g. first-order rate equations for hydrolysis and power-transformed first-order rate equations for racemisation; and 2) an alternative model-free approach, which was developed by estimating a “scaling” factor for the independent variable (time) which produces the best alignment of the experimental data. This method allows the calculation of the relative reaction rates for the different temperatures of isothermal heating. High-temperature data were compared with the extent of degradation detected in sub-fossil Patella specimens of known age, and we evaluated the ability of kinetic experiments to mimic diagenesis at burial temperature. The results highlighted a difference between patterns of degradation at low and high temperature and therefore we recommend caution for the extrapolation of protein breakdown rates to low burial temperatures for geochronological purposes when relying solely on kinetic data.
Resumo:
Throughout the corpus of Latin love elegy, the imaginary tombs envisaged by the elegists for their own personae and for other inhabitants of their poetic world display a striking tendency to take on the characteristic attributes and personalities of those interred within. The final resting-place of Propertius, for instance, that self-proclaimed acolyte of Callimachean miniaturism and exclusivity, is to be sequestered from the degrading attentions of the passing populace (Prop. 3.16.25–30) and crowned with the poet's laurel (2.13.33–4). What remains of his meagre form will rest in a ‘tiny little urn’ (paruula testa, 2.13.32) beneath a monument declaring the lover's slavery to a single passion (2.13.35–6), and the grave is to be attended, or so he hopes, by the object of that passion herself (3.16.23–4), or occasionally (though he is not so confident of this) by his patron Maecenas (2.1.71–8). Likewise the memorial designed by Ovid for Corinna's pet parrot - an imitatrix ales endowed with the most distinctive foibles of the elegiac tradition - in Amores 2.6, comprising a burial mound pro corpore magnus (2.6.59) topped with a tombstone described as exiguus (‘tiny’, 2.6.60; cf. Prop. 2.1.72, 2.13.33), exhibits an elegiac emphasis worthy of the parrot's human counterparts among Ovid's poetic predecessors.
Resumo:
Historical, artefactual and place-name evidence indicates that Scandinavian migrants moved to eastern England in the ninth century AD, settling in the Danelaw. However, only a handful of characteristically Scandinavian burials have been found in the region. One, widely held, explanation is that most of these Scandinavian settlers quickly adopted local Christian burial customs, thus leaving Scandinavians indistinguishable from the Anglo-Saxon population. We undertook osteological and isotopic analysis to investigate the presence of first-generation Scandinavian migrants. Burials from Masham were typical of the later Anglo-Saxon period and included men, women and children. The location and positioning of the four adult burials from Coppergate, however, are unusual for Anglo-Scandinavian York. None of the skeletons revealed interpersonal violence. Isotopic evidence did not suggest a marine component in the diet of either group, but revealed migration on a regional, and possibly an international, scale. Combined strontium and oxygen isotope analysis should be used to investigate further both regional and Scandinavian migration in the later Anglo-Saxon period.
Resumo:
Stable isotope ratios (δ13C and δ15N) were measured in human burials from the post-medieval (16th–18th c. AD) Carmelite friary burial grounds at Aalst, a town in Flanders, Belgium. Dietary patterns of 39 adult individuals were analyzed, from a mixed monastic and lay population buried in three different locations, reflecting groups with differing social status. The data show significant variation in the consumption of perhaps meat, but certainly also marine protein between females and males. This result represents a remarkable continuity with medieval dietary patterns, suggesting that the social and economic changes of the early modern period had a limited effect on everyday life. When both sexes were examined together, individuals buried in the cloister garth consumed significantly less marine protein compared to people buried in the church, likely reflecting social stratification. No statistical differences were observed between isotopic values from the church and the cloister alley, suggesting a similarly diverse diet of the monastic part of the buried population and that of the richer lay population. Finally, the hypothesis that diffuse idiopathic skeletal hyperostosis (DISH) is linked to a diet rich in animal protein was tested. No systematic or statistically significant differences between pathological and non-pathological bones from the same individuals affected with DISH were observed, and no statistical differences were found between individuals with DISH and individuals without DISH
Resumo:
Forensic taphonomy involves the use of decomposition to estimate postmortem interval (PMI) or locate clandestine graves. Yet, cadaver decomposition remains poorly understood, particularly following burial in soil. Presently, we do not know how most edaphic and environmental parameters, including soil moisture, influence the breakdown of cadavers following burial and alter the processes that are used to estimate PMI and locate clandestine graves. To address this, we buried juvenile rat (Rattus rattus) cadavers (∼18 g wet weight) in three contrasting soils from tropical savanna ecosystems located in Pallarenda (sand), Wambiana (medium clay), or Yabulu (loamy sand), Queensland, Australia. These soils were sieved (2 mm), weighed (500 g dry weight), calibrated to a matric potential of -0.01 megapascals (MPa), -0.05 MPa, or -0.3 MPa (wettest to driest) and incubated at 22 °C. Measurements of cadaver decomposition included cadaver mass loss, carbon dioxide-carbon (CO2-C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, ninhydrin-reactive nitrogen (NRN) and soil pH. Cadaver burial resulted in a significant increase in CO2-C evolution, MBC, enzyme activities, NRN and soil pH. Cadaver decomposition in loamy sand and sandy soil was greater at lower matric potentials (wetter soil). However, optimal matric potential for cadaver decomposition in medium clay was exceeded, which resulted in a slower rate of cadaver decomposition in the wettest soil. Slower cadaver decomposition was also observed at high matric potential (-0.3 MPa). Furthermore, wet sandy soil was associated with greater cadaver decomposition than wet fine-textured soil. We conclude that gravesoil moisture content can modify the relationship between temperature and cadaver decomposition and that soil microorganisms can play a significant role in cadaver breakdown. We also conclude that soil NRN is a more reliable indicator of gravesoil than soil pH.
Resumo:
The study of decaying organisms and death assemblages is referred to as forensic taphonomy, or more simply the study of graves. This field is dominated by the fields of entomology, anthropology and archaeology. Forensic taphonomy also includes the study of the ecology and chemistry of the burial environment. Studies in forensic taphonomy often require the use of analogues for human cadavers or their component parts. These might include animal cadavers or skeletal muscle tissue. However, sufficient supplies of cadavers or analogues may require periodic freezing of test material prior to experimental inhumation in the soil. This study was carried out to ascertain the effect of freezing on skeletal muscle tissue prior to inhumation and decomposition in a soil environment under controlled laboratory conditions. Changes in soil chemistry were also measured. In order to test the impact of freezing, skeletal muscle tissue (Sus scrofa) was frozen (−20 °C) or refrigerated (4 °C). Portions of skeletal muscle tissue (∼1.5 g) were interred in microcosms (72 mm diameter × 120 mm height) containing sieved (2 mm) soil (sand) adjusted to 50% water holding capacity. The experiment had three treatments: control with no skeletal muscle tissue, microcosms containing frozen skeletal muscle tissue and those containing refrigerated tissue. The microcosms were destructively harvested at sequential periods of 2, 4, 6, 8, 12, 16, 23, 30 and 37 days after interment of skeletal muscle tissue. These harvests were replicated 6 times for each treatment. Microbial activity (carbon dioxide respiration) was monitored throughout the experiment. At harvest the skeletal muscle tissue was removed and the detritosphere soil was sampled for chemical analysis. Freezing was found to have no significant impact on decomposition or soil chemistry compared to unfrozen samples in the current study using skeletal muscle tissue. However, the interment of skeletal muscle tissue had a significant impact on the microbial activity (carbon dioxide respiration) and chemistry of the surrounding soil including: pH, electroconductivity, ammonium, nitrate, phosphate and potassium. This is the first laboratory controlled study to measure changes in inorganic chemistry in soil associated with the decomposition of skeletal muscle tissue in combination with microbial activity.
High Royds: an integrated, analytical approach for mapping the unmarked burials of a pauper cemetery
Resumo:
Applying geophysical techniques to detect and map the physical extent of individual unmarked graves proves difficult in many cases. The success of individual geophysical techniques for detecting unmarked graves may be due to a poor understanding of the nature of the graves themselves, the context in which they lie in, and temporal changes to the burial state. Given the unpredictability of these variables, it is surprising that grave prospection is often undertaken using only a single method. This paper presents a multi-methodological survey strategy for detecting unmarked burials and utilises an analytical approach for visualising and evaluating survey results.
Resumo:
The ecology of soils associated with dead mammals (i.e. cadavers) is poorly understood. Although temperature and soil type are well known to influence the decomposition of other organic resource patches, the effect of these variables on the degradation of cadavers in soil has received little experimental investigation. To address this, cadavers of juvenile rats (Rattus rattus) were buried in one of three contrasting soils (Sodosol, Rudosol, and Vertosol) from tropical savanna ecosystems in Queensland, Australia and incubated at 29 °C, 22 °C, or 15 °C in a laboratory setting. Cadavers and soils were destructively sampled at intervals of 7 days over an incubation period of 28 days. Measurements of decomposition included cadaver mass loss, carbon dioxide–carbon (CO2–C) evolution, microbial biomass carbon (MBC), protease activity, phosphodiesterase activity, and soil pH, which were all significantly positively affected by cadaver burial. A temperature effect was observed where peaks or differences in decomposition that at occurred at higher temperature would occur at later sample periods at lower temperature. Soil type also had an important effect on some measured parameters. These findings have important implications for a largely unexplored area of soil ecology and nutrient cycling, which are significant for forensic science, cemetery planning and livestock carcass disposal.
Resumo:
Some death scene investigations commence without knowledge of the location of the body and/or decomposition site. In these cases, it is necessary to locate the remains or the site where the body decomposed prior to movement. We hypothesized that the burial of a mammalian cadaver will result in the release of ninhydrin reactive nitrogen (NRN) into associated soil and that this reaction might have potential as a tool for the identification of clandestine graves. Juvenile rat (Rattus rattus) cadavers were buried in three contrasting soil types in Australian tropical savanna ecosystems and allowed to decompose over a period of 28 days. Soils were sequentially harvested and analyzed for NRN. Cadaver burial resulted in an approximate doubling (mean = 1.7 ± 0.1) in the concentration of soil NRN. This reaction has great potential to be used as a presumptive test for gravesoil and this use might be greatly enhanced following more detailed research.