584 resultados para Bundles
Resumo:
Pharmacognostic and phytochemical study of the stem and root,,of Microgramma squamulosa (Kaulf.) Sota. Erva silvina, or Microgramma squamulosa (Kaulf.), Sota belongs to the family Polylodiaceae and is traditionally used as an antiulcer agent. Previous assays showed results that confirm the antiulcer action of the ethanolic extract and some fractions of the stem of M squamulosa and results showing no significant toxicity in the acute model, both made in rats Due to the significant results obtained in this previous work, it becomes important to furnish tools to identify the vegetal drug. The species is' an epiphyte that bears lanceolate scales totally covering the long-creeping brown-colored stem. Adventicious roots can be seen in the abaxial portion of, the-stem, while the leaves appear in the adaxial portion. Elements which contribute to the histological identification are: peltate lanceolate -haired scales, sclereids, meristeles (amphicribal bundles) and scalariform the roots. Phytochemical screening, and TLC tracheids in the stem; strip hairs and sclereids in analysis showed the presence of flavonoids and tannins which may be related to the anti,ulcer the plant as well as the characterization of activity. Results shown may help the identification of the fragmented vegetal drug and if it is presented as powder or as extract.
Resumo:
The ultrastructure of the ovariole sheath along the Diatraea saccharalis ovariole was studied by scanning and transmission electron microscopy. Each ovariole is surrounded by an epithelial sheath, a tunica propria and scattered lumen cells. These three components of the ovariole sheath show different ultrastructural features along the ovariole, in the germarium or in the vitellarium; these differences are more evident in the epithelial sheath cells. The epithelial sheath is composed by two layers of cells, the external one running longitudinally and the internal one running circularly in the ovariole. These cells, in vitellarium, present cytoplasmic bundles of myofilaments that are arranged parallel to the long axis of the cells; these myofilaments are apparently related to the contraction movements of the follicles within the ovariole. The acellular tunica propria, composed of finely filamentous material, is attached to the adjacent follicle cells by adhesive dense plates. Between the epithelial sheath and the tunica propria there is a population of lumen cells, with morphological features of secretory activity.
Resumo:
Stern anatomy and the development of intraxylary phloem were investigated in six to eight years old Coccinia indica L. (Cucurbitaceae). Secondary growth in the stems was achieved by the normal cambial activity. In the innermost part of the thicker stems, xylem parenchyma and pith cells dedifferentiated into meristematic cells at several points. In some of the wider rays, ray cells dedifferentiate and produce secondary xylem and phloem with different orientations and sometimes a complete bicollateral vascular bundle. The inner cambial segments of the bicollateral vascular bundle (of primary growth) maintained radial arrangement even in the mature stems but in most places the cambia were either inactive or showed very few cell divisions. Concomitant with the obliteration and collapse of inner phloem (of bicollateral vascular bundles), parenchyma cells encircling the phloem became meristematic forming a circular sheath of internal cambia. These internal cambia produce only intraxylary secondary phloem centripetally and do not produce any secondary xylem. In the stem, secondary xylem consisted mainly of axial parenchyma, small strands of thick-walled xylem derivatives, i.e. vessel elements and fibres embedded in parenchymatous ground mass, wide and tall rays along with exceptionally wide vessels characteristic of lianas. In thick stems, the axial parenchyma de-differentiated into meristem, which later re-differentiated into interxylary phloem. Fibre dimorphism and pseudo-vestured pits in the vessels are also reported.
Resumo:
The genus Piper L. includes a great number of medicinal interest species. P. arboreum is frequent in forests of Maringa, Parana State, Brazil. Its leaves and stem are analyzed morphologic and anatomically, freehand sectioned in cross-section and longitudinal section, and were stained in astra blue and safranin. Petiole and midrib base present 15-20 vascular bundles. The blade is hypostomatic, dorsiventral and shows staurocytic stomatal complex, subepidermis and oil idioblasts. The stem possesses medullary vascular bundles; a typical endodermis is not observed, as it occurs in other Piper species.
Resumo:
V. S. PATIL (Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 India), K. S. RAO (BRD School of Bioscieces, S. P. University, Vallabh Vidyanagar, India), and K. S. RAJPUT (Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 India). Development of intraxylary phloem and internal cambium in Ipomoea hederifolia (Convolvulaceae). J. Torrey Bot. Soc. 136: 423-432. 2009-In Ipomoea hederifolia L. (Convolvulaceae), internal/intraxylary phloem originated as isolated strands from the procambially derived cells after the formation of protoxylem and protophloem. Bands of internal phloem were apparent in the sixth internode after the development of metacambium. In the relatively thick stems several small arcs/segments of internal cambium ensues from the parenchyma cells between the protoxylem and internal protophloem. Though all the segments were active, some of them (two of them located opposite to each other) were relatively more active. Bidirectional differentiation of these segments gave rise to secondary xylem centrifugally and secondary phloem centripetally, resulting inverted vascular bundles. Rest of the internal cambium segments were unidirectional and formed only secondary phloem centripetally. Like external vascular cambium, the internal cambium was non-storied. Structurally, secondary xylem and phloem was composed of axial and radial system in which rays were mostly uni- to biseriate. Secondary xylem produced by the internal cambium was more or less similar to the xylem formed by the external successive cambia. Secondary phloem produced by the internal cambium was composed of sieve tubes, companion cells, axial and ray parenchyma cells. Simple sieve plates of internal phloem were mostly arranged on transverse end walls in contrast to compound and obliquely placed sieve plates of external phloem formed by the successive cambia.
Resumo:
Stem diameter in Gallesia integrifolia (Spreng.) Harms (Phytolaccaceae) increases by forming concentric rings of xylem alternating with phloem, which show frequent anastomoses. After a period of primary growth and the formation of first (normal) ring of vascular cambium, further successive rings are initiated outside this cambium. The second ring of cambium originates from the pericycle parenchyma located between the proto-phloem, and the pericycle fibres. Each cambium produces centripetally secondary xylem and centrifugally secondary phloem. Differentiation of xylem precedes that of phloem and the first elements formed are always xylem fibres. Structurally, the vascular cylinder is composed by successive rings of secondary xylem and phloem. These rings are separated by wide bands of conjunctive parenchyma tissue. Presence of collateral vascular bundles with irregular orientation is observed in the region of anastomoses of two or more bands of conjunctive tissue. These bundles are surrounded by isodiametric, lignified and thick-walled cells. In some of the cambial rings, occurrence of polycentric rays was also noticed; these rays are tall, and characterized by the presence of meristematic regions that differentiated into thick-walled elements of secondary xylem. Origin and development of the successive cambia and the structure of xylem are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The articular disc of the temporomandibular joint was studied in fetuses (16 to 39 weeks of intrauterine life), infants (up to 4 months of age), dentulous adults (aged 30 to 39 years), and completely edentulous adults (aged 60 to 69 years) by scanning electron microscopy. The constituent bundles of collagen fibers were stratified and were oriented anteroposteriorly, laterolaterally, and obliquely in the middle portion of the disc. A ring of laterolateral bundles constituted the main feature of the thick posterior portion. In the anterior portion of the disc, the fibers were anteroposteriorly and obliquely oriented. On the superior and inferior surfaces of the disc, a thin layer of perpendicularly arranged collagen fibers covered the underlying, thick, laterolateral oriented collagen fibers.
Resumo:
The original brachytic population 'Dent Single Cross Composite' (DSCC-br2br2) and a selection-derived sub-population with modified plant architecture (DSCC-br2br2-Lg3Lg3, selected for erect leaves), were evaluated for the following characteristics number of vascular bundles of greater and smaller size, total vascular tissue area (phloem and xylem), sustaining tissue area (vascular tissue plus sclerenchyma), phloem and sclerenchyma areas in apical, medial and basal portions from midclub and in apical and basal sheath regions (from second leaf above and first below ear insertion). These variables had different values for the five different sections studied in each leaf and these differences did not have the same pattern in the two DSCC populations (brachytic and with modified architecture). Selection for architectural modification caused some indirect foliar anatomical modifications. With the exception of the phloem and the vascular tissue areas in apical leaf and sheath base regions, the modified plant architecture population showed smaller values of sustaining tissue area, sclerenchyma area, vascular tissue area and number of smaller vascular bundles than the original one. In the ligule region the modified maize leaves had smaller vascular and sustaining tissue areas, reducing transportation area, which could reduce gram yield.
Resumo:
The morphology of the dura mater and its relationship with the structures of the cavernous sinus were analyzed in five tufted capuchin monkeys (Cebus apella) using histological sections, showing that the walls of the cavernous sinus of this species are similar to those of other primates, including man. Except for the medial wall of the cavernous sinus, the remaining walls consist of two distinct dura mater layers. The deep layer of the lateral wall of the cavernous sinus is contiguous to the sheath of the oculomotor, trochlear and ophthalmic nerves. Arterioles, venules, venous spaces, neuronal bodies and nervous fiber bundles are found on this lateral wall.
Resumo:
The vascular segment of the caudal vena cava of the dog at the level of the caudate lobe was shown to be intimately related to hepatic tissue through the hepatic capsule and parenchyma. The tunica adventitia of the caudal vena cava was formed mainly by smooth muscle cells with collagen and elastic fibers arranged in bundles. The thin tunica media of the vein was also formed by smooth muscle cells, collagen and elastic fibers arranged in bundles. The tunica intima presented an elastic sub-endothelial network. The hepatic segment of the caudal vena cava showed a myoconnective architecture and propulsive characteristics in terms of its hemodynamic pattern.
Resumo:
In anuran amphibian Scinax fuscovarius, the spermatogenesis occurs in structures called seminiferous loculi, in which germ epithelium is organized in spermatocysts. Each cyst contains cells in the same stage of cytodifferentiation. Characteristics of each cellular type and their groups made the identification and differentiation of the germ lineage cells possible. In the basis of the epithelium there are the spermatogonia I, the biggest cells and always associated with the Sertoli cell. After the phase of mitotic proliferation, the cysts containing variable number of spermatogonia II are originated, quite smaller and with cellular boundaries a little distinct. After differentiation and growth in volume, the spermatocytes I appear, the nuclei of which are spherical and with different degrees of compaction of the nuclear material. Starting the meiotic process, the spermatocytes II are originated, which by means of the second meiotic division become haploid cells, the spermatids I. These two last spermatocysts are very similar. In this phase, the cells will go through a prominent process of differentiation until they form the spermatids II, which are elongated and begin to be organized in bundles supported by prominent Sertoli cells. With the process of spermiogenesis, spermatozoa appear, usually observed in compact bundles with tails turned to the lumen and their heads fitted in their support cells. In more advanced stages, the spermatozoa can be observed free in the locular lumen, ready to follow the spermatic path.
Resumo:
Xylella fastidiosa, a xylem-limited bacterium, causes several economically important diseases in North, Central, and South America. These diseases are transmitted by sharpshooter insects, contaminated budwood, and natural root-grafts. X. fastidiosa extensively colonizes the xylem vessels of susceptible plants. Citrus fruit have a well-developed vascular system, which is continuous with the vascular system of the plant. Citrus seeds develop very prominent vascular bundles, which are attached through ovular and seed bundles to the xylem system of the fruit. Sweet orange (Citrus sinensis) fruit of cvs. Pera, Natal, and Valencia with characteristic symptoms of citrus variegated chlorosis disease were collected for analysis. X. fastidiosa was detected by polymerase chain reaction (PCR) in all main fruit vascular bundles, as well as in the seed and in dissected seed parts. No visual abnormalities were observed in seeds infected with the bacterium. However, the embryos of the infected seeds weighed 25% less than those of healthy seeds, and their germination rate was lower than uninfected seeds. There were about 2,500 cells of X. fastidiosa per infected seed of sweet orange, as quantified using real-time PCR techniques. The identification of X. fastidiosa in the infected seeds was confirmed by cloning and sequencing the specific amplification product, obtained by standard PCR with specific primers. X. fastidiosa was also detected in and recovered from seedlings by isolation in vitro. Our results show that X. fastidiosa can infect and colonize fruit tissues including the seed. We also have shown that X. fastidiosa can be transmitted from seeds to seedlings of sweet orange. To our knowledge, this is the first report of the presence of X. fastidiosa in seeds and its transmission to seedlings.
Resumo:
Maytenus ilicifolia and Maytenus aquifolia (Celastraceae) both designated espinheira-santa have proven anti-ulcer activity. Morphologic similarities between leaves of espinheira-santa and mata-olho (Sorocea bonplandii), has motivated fakes in the market of phytotherapy. The present work consisted of the anatomical study, including stem and leaf, of the species M. ilicifolia, M. aquifolia and S. bomplandii. Samples of adult leaves and stem of plants located in the cities of Maringá and Marialva were collected. Both are located in the northwest region of Paraná State. The botanical material was prepared with using usual techniques of anatomy. The leaves of both Maytenus species presented great similarities, characterizing itself for the presence of epidermal cells with straight walls, biseriate palisade tissue, petiole vascular system represented by unique amphicribal bundle and sclereids, which were present in the stems of these two species. S. bomplandii leaves differed of Maytenus species for presenting epidermal cells with undulated walls, uniserite palisade tissue, petiole vascular system represented by many collateral bundles and gelatinous fibres. Non-glandular trichomes, glandular trichomes, and laticifer only occur in S. bomplandii.