980 resultados para Brown, Gregory K
Resumo:
The Pleistocene was a dynamic period for Holarctic mammal species, complicated by episodes of glaciation, local extinctions, and intercontinental migration. The genetic consequences of these events are difficult to resolve from the study of present-day populations. To provide a direct view of population genetics in the late Pleistocene, we measured mitochondrial DNA sequence variation in seven permafrost-preserved brown bear (Ursus arctos) specimens, dated from 14,000 to 42,000 years ago. Approximately 36,000 years ago, the Beringian brown bear population had a higher genetic diversity than any extant North American population, but by 15,000 years ago genetic diversity appears similar to the modern day. The older, genetically diverse, Beringian population contained sequences from three clades now restricted to local regions within North America, indicating that current phylogeographic patterns may provide misleading data for evolutionary studies and conservation management. The late Pleistocene phylogeographic data also indicate possible colonization routes to areas south of the Cordilleran ice sheet.
Resumo:
Homologous sense suppression of a gene encoding lignin pathway caffeic acid O-methyltransferase (CAOMT) in the xylem of quaking aspen (Populus tremuloides Michx.) resulted in transgenic plants exhibiting novel phenotypes with either mottled or complete red-brown coloration in their woody stems. These phenotypes appeared in all independent transgenic lines regenerated with a sense CAOMT construct but were absent from all plants produced with antisense CAOMT. The CAOMT sense transgene expression was undetectable, and the endogenous CAOMT transcript levels and enzyme activity were reduced in the xylem of some transgenic lines. In contrast, the sense transgene conferred overexpression of CAOMT and significant CAOMT activity in all of the transgenic plants' leaves and sclerenchyma, where normally the expression of the endogenous CAOMT gene is negligible. Thus, our results support the notion that the occurrence of sense cosuppression depends on the degree of sequence homology and endogene expression. Furthermore, the suppression of CAOMT in the xylem resulted in the incorporation of a higher amount of coniferyl aldehyde residues into the lignin in the wood of the sense plants. Characterization of the lignins isolated from these transgenic plants revealed that a high amount of coniferyl aldehyde is the origin of the red-brown coloration—a phenotype correlated with CAOMT-deficient maize (Zea mays L.) brown-midrib mutants.
Resumo:
Benzodiazepine (BZA)-5B, a CAAX farnesyl-transferase inhibitor, was previously shown to block the farnesylation of H-Ras and to reverse the transformed morphology of Rat1 cells expressing oncogenic H-RasV12. Non-transformed Rat1 cells were not affected by BZA-5B, suggesting that they produce a form of Ras whose prenylation is not blocked by this compound. The likely candidate is K-RasB, which differs from H-Ras primarily in the terminal 24 amino acids. In the current study we examined the effect of BZA-5B on the prenylation of a chimeric oncogenic Ras protein designated H/K-RasBV12, consisting of the first 164 amino acids of H-RasV12 followed by the last 24 amino acids of K-RasB. BZA-5B failed to block the prenylation of this chimera and was thus unable to reverse the transformed morphology of Rat1 cells in which it was expressed. Another potent inhibitor of H-Ras farnesylation, L-739,749, also failed to block prenylation of H/K-RasBV12. Similar results were obtained in transfected cells expressing a widely used version of K-RasBV12 containing a 10-amino acid extension at its NH2 terminus. Neither BZA-5B nor L-739,749 reversed the transformed morphology of cells expressing H/K-RasBV12. The resistance of K-RasB to farnesyltransferase inhibition provides a likely explanation for the resistance of nontransformed cells to the growth inhibitory effects of BZA-5B and L-739,749.
Resumo:
Written in one column, in a nastaʻlīq script in black ink, rubricated in red, 13 lines per page, with marginal corrections. Catchwords on the verso of each leaf.
Resumo:
Title from fol. 1r.