952 resultados para Brain injury
Resumo:
The purpose of this review is to critically appraise the pain assessment tools for non communicative persons in intensive care available in the literature and to determine their relevance for those with brain injury. Nursing and medical electronic databases were searched to identify pain tools, with a description of psychometric proprieties, in English and French. Seven of the ten tools were considered relevant and systematically evaluated according to the criteria and the indicators in the following five areas: conceptualisation, target population, feasibility and clinical utility, reliability and validity. Results indicate a number of well designed pain tools, but additional work is necessary to establish their accuracy and adequacy for the brain injured non communicative person in intensive care. Recommendations are made to choose the best tool for clinical practice and for research.
Resumo:
Acute subdural haematoma (ASDH) is one of the conditions most strongly associated with severe brain injury. Reports prior to 1980 describe overall mortality rates for acute subdural haematomas (SDH's) ranging from 40% to 90% with poor outcomes observed in all age groups. Recently, improved results have been reported with rapid diagnosis and surgical treatment. The elderly are predisposed to bleeding due to normal cerebral atrophy related to aging, stretching the bridging veins from the dura. Prognosis in ASDH is associated with age, time from injury to treatment, presence of pupillary abnormalities, Glasgow Coma Score (GCS) or motor score on admission, immediate coma or lucid interval, computerized tomography findings (haematoma volume, degree of midline shift, associated intradural lesion, compression of basal cisterns), post-operative intracranial pressure and type of surgery. Advancing age is known to be a determinant of outcome in head injury. The authors present the results of a retrospective study carried out in Beaumont Hospital, Dublin, Ireland's national neurosurgical centre. The aim of this study was to examine the impact of age on outcome in patients with ASDH following severe head injury. Only cases with acute subdural haematoma requiring surgical evacuation were recruited.
Resumo:
PURPOSE: Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). METHODS: We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP. RESULTS: Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95% confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. CONCLUSIONS: Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.
Resumo:
BACKGROUND: Age and the Glasgow Coma Scale (GCS) score on admission are considered important predictors of outcome after traumatic brain injury. We investigated the predictive value of the GCS in a large group of patients whose computerised multimodal bedside monitoring data had been collected over the previous 10 years. METHODS: Data from 358 subjects with head injury, collected between 1992 and 2001, were analysed retrospectively. Patients were grouped according to year of admission. Glasgow Outcome Scores (GOS) were determined at six months. Spearman's correlation coefficients between GCS and GOS scores were calculated for each year. RESULTS: On average 34 (SD: 7) patients were monitored every year. We found a significant correlation between the GCS and GOS for the first five years (overall 1992-1996: r = 0.41; p<0.00001; n = 183) and consistent lack of correlations from 1997 onwards (overall 1997-2001: r = 0.091; p = 0.226; n = 175). In contrast, correlations between age and GOS were in both time periods significant and similar (r = -0.24 v r = -0.24; p<0.002). CONCLUSIONS: The admission GCS lost its predictive value for outcome in this group of patients from 1997 onwards. The predictive value of the GCS should be carefully reconsidered when building prognostic models incorporating multimodality monitoring after head injury.
Resumo:
PURPOSE OF REVIEW: Energy metabolism is increasingly recognized as a key factor in the pathogenesis of acute brain injury (ABI). We review the role of cerebral lactate metabolism and summarize evidence showing that lactate may act as supplemental fuel after ABI. RECENT FINDINGS: The role of cerebral lactate has shifted from a waste product to a potentially preferential fuel and signaling molecule. According to the astrocyte-neuron lactate shuttle model, glycolytic lactate might act as glucose-sparing substrate. Lactate also is emerging as a key signal to regulate cerebral blood flow (CBF) and a neuroprotective agent after experimental ABI. Clinical investigation using cerebral microdialysis shows the existence of two main lactate patterns, ischemic - from anaerobic metabolism - and nonischemic, from activated glycolysis, whereby lactate can be used as supplemental energy fuel. Preliminary clinical data suggests hypertonic lactate solutions improve cerebral energy metabolism and are an effective treatment for elevated intracranial pressure (ICP) after ABI. SUMMARY: Lactate can be a supplemental fuel for the injured brain and is important to regulate glucose metabolism and CBF. Exogenous lactate supplementation may be neuroprotective after experimental ABI. Recent clinical data from ABI patients suggest hypertonic lactate solutions may be a valid therapeutic option for secondary energy dysfunction and elevated ICP.
The psychosocial difficulties in brain disorders that explain short term changes in health outcomes.
Resumo:
BACKGROUND: This study identifies a set of psychosocial difficulties that are associated with short term changes in health outcomes across a heterogeneous set of brain disorders, neurological and psychiatric. METHODS: Longitudinal observational study over approximately 12 weeks with three time points of assessment and 741 patients with depression, bipolar disorders, multiple sclerosis, parkinson's disease, migraine, traumatic brain injury and stroke. The data on disability was collected with the checklist of the International Classification of Functioning, Disability and Health. The selected health outcomes were the Short Form 36 and the World Health Organization Disability Assessment Schedule. Multilevel models for change were applied controlling for age, gender and disease severity. RESULTS: The psychosocial difficulties that explain the variability and change over time of the selected health outcomes were energy and drive, sleep, and emotional functions, and a broad range of activities and participation domains, such as solving problems, conversation, areas of mobility and self-care, relationships, community life and recreation and leisure. CONCLUSIONS: Our findings are of interest to researchers and clinicians for interventions and health systems planning as they show that in addition to difficulties that are diagnostic criteria of these disorders, there are other difficulties that explain small changes in health outcomes over short periods of time.
Resumo:
Primary objectives: Awake surgeries of slow-growing tumours invading the brain and guided by direct electrical stimulation induce major brain reorganizations accompanied with slight impairments post-operatively. In most cases, these deficits are so slight after a few days that they are often not detectable on classical neuropsychological evaluations. Consequently, this study investigated whether simple visuo-manual reaction time paradigms would sign some level of functional asymmetries between both hemispheres. Importantly, the visual stimulus was located in the saggital plane in order to limit attentional biases and to focus mainly on the inter-hemispheric asymmetry. Methods and procedures: Three patients (aged 41, 59 and 59 years) after resections in parietal regions and a control group (age¼44, SD¼6.9) were compared during simple uni- and bimanual reaction times (RTs). Main outcomes and results: Longer RTs were observed for the contralesional compared to the ipsilesional hand in the unimanual condition. This asymmetry was reversed for the bimanual condition despite longer RTs. Conclusion and clinical implications: Reaction time paradigms are useful in these patients to monitor more precisely their functional deficits, especially their level of functional asymmetry, and to understand brain (re)organization following slowgrowing lesions.
Resumo:
PURPOSE OF REVIEW: An important goal of neurocritical care is the management of secondary brain injury (SBI), that is pathological events occurring after primary insult that add further burden to outcome. Brain oedema, cerebral ischemia, energy dysfunction, seizures and systemic insults are the main components of SBI. We here review recent data showing the clinical utility of brain multimodality monitoring (BMM) for the management of SBI. RECENT FINDINGS: Despite being recommended by international guidelines, standard intracranial pressure (ICP) monitoring may be insufficient to detect all episodes of SBI. ICP monitoring, combined with brain oxygen (PbtO(2)), cerebral microdialysis and regional cerebral blood flow, might help to target therapy (e.g. management of cerebral perfusion pressure, blood transfusion, glucose control) to patient-specific pathophysiology. Physiological parameters derived from BMM, including PbtO(2) and microdialysis lactate/pyruvate ratio, correlate with outcome and have recently been incorporated into neurocritical care guidelines. Advanced intracranial devices can be complemented by quantitative electroencephalography to monitor changes of brain function and nonconvulsive seizures. SUMMARY: BMM offers an on-line comprehensive scrutiny of the injured brain and is increasingly used for the management of SBI. Integration of monitored data using new informatics tools may help optimize therapy of brain-injured patients and quality of care.
Resumo:
Maintenance of adequate oxygenation is a mainstay of intensive care, however, recommendations on the safety, accuracy, and the potential clinical utility of invasive and non-invasive tools to monitor brain and systemic oxygenation in neurocritical care are lacking. A literature search was conducted for English language articles describing bedside brain and systemic oxygen monitoring in neurocritical care patients from 1980 to August 2013. Imaging techniques e.g., PET are not considered. A total of 281 studies were included, the majority described patients with traumatic brain injury (TBI). All tools for oxygen monitoring are safe. Parenchymal brain oxygen (PbtO2) monitoring is accurate to detect brain hypoxia, and it is recommended to titrate individual targets of cerebral perfusion pressure (CPP), ventilator parameters (PaCO2, PaO2), and transfusion, and to manage intracranial hypertension, in combination with ICP monitoring. SjvO2 is less accurate than PbtO2. Given limited data, NIRS is not recommended at present for adult patients who require neurocritical care. Systemic monitoring of oxygen (PaO2, SaO2, SpO2) and CO2 (PaCO2, end-tidal CO2) is recommended in patients who require neurocritical care.
Resumo:
Several observations support the hypothesis that differences in synaptic and regional cerebral plasticity between the sexes account for the high ratio of males to females in autism. First, males are more susceptible than females to perturbations in genes involved in synaptic plasticity. Second, sex-related differences in non-autistic brain structure and function are observed in highly variable regions, namely, the heteromodal associative cortices, and overlap with structural particularities and enhanced activity of perceptual associative regions in autistic individuals. Finally, functional cortical reallocations following brain lesions in non-autistic adults (for example, traumatic brain injury, multiple sclerosis) are sex-dependent. Interactions between genetic sex and hormones may therefore result in higher synaptic and consecutively regional plasticity in perceptual brain areas in males than in females. The onset of autism may largely involve mutations altering synaptic plasticity that create a plastic reaction affecting the most variable and sexually dimorphic brain regions. The sex ratio bias in autism may arise because males have a lower threshold than females for the development of this plastic reaction following a genetic or environmental event.
Resumo:
Brain injury is frequently observed after sepsis and may be primarily related to the direct effects of the septic insult on the brain (e.g., brain edema, ischemia, seizures) or to secondary/indirect injuries (e.g., hypotension, hypoxemia, hypocapnia, hyperglycemia). Management of brain injury in septic patients is first focused to exclude structural intracranial complications (e.g., ischemic/hemorrhagic stroke) and possible confounders (e.g., electrolyte alterations or metabolic disorders, such as dysglycemia). Sepsis-associated brain dysfunction is frequently a heterogeneous syndrome. Despite increasing understanding of main pathophysiologic determinants, therapy is essentially limited to protect the brain against further cerebral damage, by way of "simple" therapeutic manipulations of cerebral perfusion and oxygenation and by avoiding over-sedation. Non-invasive monitoring of cerebral perfusion and oxygenation with transcranial Doppler (TCD) and near-infrared spectroscopy (NIRS) is feasible in septic patients. Electroencephalography (EEG) allows detection of sepsis-related seizures and holds promise also as sedation monitoring. Brain CT-scan detects intra-cerebral structural lesions, while magnetic resonance imaging (MRI) provides important insights into primary mechanisms of sepsis-related direct brain injury, (e.g., cytotoxic vs. vasogenic edema) and the development of posterior reversible encephalopathy. Together with EEG and evoked potentials (EP), MRI is also important for coma prognostication. Emerging clinical evidence suggests monitoring of the brain in septic patients can be implemented in the ICU. The objective of this review was to summarize recent clinical data about the role of brain monitoring - including TCD, NIRS, EEG, EP, CT, and MRI - in patients with sepsis and to illustrate its potential utility for the diagnosis, management and prognostication.
Resumo:
Preterm birth is a risk for normal brain development. Brain maturation that normally happens in the uterus is in very preterm infants a developmental challenge during their stay in a neonatal intensive care unit (NICU). Typical brain injuries of preterm infants include ischemic injuries, brain haemorrhages, ventricular dilatation (VD), and reduced brain volumes. Brain injury is a serious complication of prematurity leading to possible long term consequences for the neurodevelopment of the very low birth weight (VLBW) infant, such as cerebral palsy (CP), hearing impairments, vision problems, and delay in cognitive development.There is a need for further studies to ascertain the potential risk factors and their causal relationships to brain vulnerability, growth and development in the increasing number of surviving VLBW infants. This thesis consists of four studies evaluating the definitions, causes and consequences of brain lesions in VLBW(<1500g) or very low gestationalage (VLGA) (gestational age <32 gestational weeks) infants. We showed that the redistribution of fetal blood flow is a risk factor for smaller brain volumes at term. In addition,we showed that brain lesions related to prematurity are not associated with increased spontaneous crying behaviour or circadian rhythm development in infancy. However, the preterm infants began to fuss more often and were held more than term infants at five months of age. Furthermore, we showed that VD is associated with brain lesions and smaller brain volumes. Therefore, brain magneticresonance imaging can be recommended for infants with VD. VD together with other brain pathology is a risk factor for the onset of developmental impairments in VLBW/VLGA infants at two years of age.
Resumo:
The data reviewed here suggest the possibility that a global reduction of blood supply to the whole brain or solely to the infratentorial structures down to the range of ischemic penumbra for several hours or a few days may lead to misdiagnosis of irreversible brain or brain stem damage in a subset of deeply comatose patients with cephalic areflexia. The following proposals are advanced: 1) the lack of any set of clinically detectable brain functions does not provide a safe diagnosis of brain or brain stem death; 2) apnea testing may induce irreversible brain damage and should be abandoned; 3) moderate hypothermia, antipyresis, prevention of arterial hypotension, and occasionally intra-arterial thrombolysis may contribute to good recovery of a possibly large subset of cases of brain injury currently regarded as irreversible; 4) confirmatory tests for brain death should not replace or delay the administration of potentially effective therapeutic measures; 5) in order to validate confirmatory tests, further research is needed to relate their results to specific levels of blood supply to the brain. The current criteria for the diagnosis of brain death should be revised.
Resumo:
Mild head injury (MHI) is a serious cause of neurological impairment as is evident by the substantial percentage (15%) of individuals who remain symptomatic at least 1-year following "mild" head trauma. However, there is a paucity of research investigating the social consequences following a MHI. The first objective of this study was to examine whether measures of executive functioning were predictive of specific forms of antisocial behaviour, such as reactive aggression, impulsive antisocial behaviour, behavioural disinhibition, and deficits in social awareness after controlling for the variance accounted for by sex differences. The second objective was to investigate whether a history of MHI was predictive of these same social consequences after controlling for both sex differences and executive functioning. Ninety university students participated in neuropsychological testing and filled out self-report questionnaires. Fifty-two percent of the sample self-reported experiencing a MHI. As expected, men were more reactively aggressive and antisocial than women. Furthermore, executive dysfunction predicted reactive aggression and impulsive antisocial behaviour after controlling for sex differences. Finally, as expected, MHI status predicted reactive aggression, impulsive antisocial behaviour, and behavioural disinhibition after controlling for sex and executive fimctioning. MHI status and executive functioning did not predict social awareness or sensitivity to reward or punishment. These results suggest that incurring a MHI has serious social consequences that mirror the neurobehavioural profile following severe cases of brain injury. Therefore, the social sequelae after MHI imply a continuum of behavioural deficits between MHI and more severe forms of brain injury.
Resumo:
A large variety of social signals, such as facial expression and body language, are conveyed in everyday interactions and an accurate perception and interpretation of these social cues is necessary in order for reciprocal social interactions to take place successfully and efficiently. The present study was conducted to determine whether impairments in social functioning that are commonly observed following a closed head injury, could at least be partially attributable to disruption in the ability to appreciate social cues. More specifically, an attempt was made to determine whether face processing deficits following a closed head injury (CHI) coincide with changes in electrophysiological responsivity to the presentation of facial stimuli. A number of event-related potentials (ERPs) that have been linked specifically to various aspects of visual processing were examined. These included the N170, an index of structural encoding ability, the N400, an index of the ability to detect differences in serially presented stimuli, and the Late Positivity (LP), an index of the sensitivity to affective content in visually-presented stimuli. Electrophysiological responses were recorded while participants with and without a closed head injury were presented with pairs of faces delivered in a rapid sequence and asked to compare them on the basis of whether they matched with respect to identity or emotion. Other behavioural measures of identity and emotion recognition were also employed, along with a small battery of standard neuropsychological tests used to determine general levels of cognitive impairment. Participants in the CHI group were impaired in a number of cognitive domains that are commonly affected following a brain injury. These impairments included reduced efficiency in various aspects of encoding verbal information into memory, general slower rate of information processing, decreased sensitivity to smell, and greater difficulty in the regulation of emotion and a limited awareness of this impairment. Impairments in face and emotion processing were clearly evident in the CHI group. However, despite these impairments in face processing, there were no significant differences between groups in the electrophysiological components examined. The only exception was a trend indicating delayed N170 peak latencies in the CHI group (p = .09), which may reflect inefficient structural encoding processes. In addition, group differences were noted in the region of the N100, thought to reflect very early selective attention. It is possible, then, that facial expression and identity processing deficits following CHI are secondary to (or exacerbated by) an underlying disruption of very early attentional processes. Alternately the difficulty may arise in the later cognitive stages involved in the interpretation of the relevant visual information. However, the present data do not allow these alternatives to be distinguished. Nonetheless, it was clearly evident that individuals with CHI are more likely than controls to make face processing errors, particularly for the more difficult to discriminate negative emotions. Those working with individuals who have sustained a head injury should be alerted to this potential source of social monitoring difficulties which is often observed as part of the sequelae following a CHI.