965 resultados para Bottom electrode
Resumo:
In this study, in order to assess the ecological health status and zoning of soft bottom of Gorgan Bay, the spatial and temporal distribution of macrofauna and their relationship with environmental stress were investigated. Sediment samples were collected using a Van Veen grab at 22 sampling points, seasonally during 2012-2013. The averages (±SD) of the percentages of sand, silt, clay and TOM (Total Organic Matter) in the sediment samples were determined (44.4± 15, 53.4 ± 14, and 2.2 ±2.2 and 7.2% ± 1.6, respectively). Our results showed that mean (range) of Al, As, Cu, Fe, Ni, Pb and Zn in the sediment samples were 1.2 % (0.4-2.1), 4.8 (2.5- 10.3) ppm, 10.5 (4.4-16.9) ppm, 1 (0.4 – 1.6) % , 13.6 (6.2-21.5) ppm, 9.1 (4.7-12.9) ppm and 23.9 (3.1-39.4) ppm, respectively. In spring, both Al and Ni were higher than the guideline level. In the event that arsenic was exceeds the guidelines in summer. In this study, 14 species of macrofauna from 12 families were identified. Polychaeta with 3 species was the most dominant group in terms of abundance. The four most abundant taxa making up 85% of all specimens (Streblospio gynobranchiata, Tubificidae, Hediste versicolor and Abra segmentum). The western area were characterized by the higher species diversity (H', 1.94). So Gorgan Bay presents transitional macrobenthic assemblages that are spatially distributed along substrate gradients .The mean of Shannon index, BENTIX, BO2A, AMBI and M-AMBI in the bay was 1.3, 2.2, 0.4, 3.2 and 0.65 respectively. According to the results of these indices, ecological status of the western part of the bay assessed better than the other parts. According to the results of the nmMDS (non-metric Multidimensional Scaling), PCA (Principal Components Analysis), the map of distribution of heavy metals and the map of the ecological status , it seems Gorgan Bay is divided into two separate zones (the eastern and the western parts).M-AMBI finaly introduced reliable index for assessing the ecological status of the Bay.
Resumo:
Surrounding Net Fishery (laila) and Bottom Long Line Fishery which operate in the coastal waters of Kalpitiya Peninsula, compete for the same fish resources, resulting in a fishery dispute between the respective fishermen. Both fisheries target demersal as well as mid pelagic fishes, such as travellys (parava), mullets (galmalu) and barracudas (ulava). As the dispute had an adverse impact on the social harmony in the fishing community of the area, a socio-economic survey was conducted to study the underlying factors and to suggest policy measures to resolve the issue. The laila fishermen were resident fishermen in the Kalpitiya Peninsula while bottom long line fishermen were migratory fishermen from Negombo and Chilaw areas in the west coast of Sri Lanka. The Kalpitiya peninsula is located in the North West coast, some 50 km away from the west coast. Although the educational level and literacy rate of the laila community was below that of the bottom long line community, the laila community was economically better off. The net economic returns from laila fishery were superior to that from bottom long line fishery. The boat owner's and crew's share per operation of laila fishery were Rs.3,736 and Rs.947 respectively. The same figures for bottom long line fishery were Rs.588 and Rs.327 respectively. The resource rent from laila fishery was Rs.5,860, however, and much higher than that for bottom long line fishery (Rs.275), showing that the laila fishery exploits the targeted fish resource at a much higher rate compared to bottom long line fishery. This situation badly affects the equitable distribution of resources between the two fishing communities and results in unequal economic gains. Based on the findings of this study, certain input/output controls are proposed to address this problem, among which is the need to increase license fee for laila fishery units to offset the higher exploitation rate of fish resources.
Resumo:
Under the implementation of the fisheries management plan (IFMP) for Lake Victoria result area 4, bottom trawl monitoring surveys are undertaken to monitor changes in the status of the fish stocks and environment of Lake Victoria. Trawl together with the lake-wide Hydroacoustic surveys give a reflection on the status of fish stocks in the lake to guide management decisions The National working group for bottom trawl surveys in Uganda undertakes these surveys within the Uganda sector of Lake Victoria. For the purpose of this survey, the Uganda sector of Lake Victoria is divided into three zones. A cruise lasting twenty days is conducted in two phases (two legs) 13 days covering Zones I and II and 7 days in Zone III.
Resumo:
Codends of four different mesh size" were compared during exploratory bottom trawling on Lake Victoria. Small mesh sizes (19 and 38 mm) generally caught greater quantities of fish than large mesh sizes (64 and 76 mm) with haplochromis species responsible for the difference. The differences in catch rates were most pronounced where dense concentration of small haplochromis were found. This was generally in shallow water since the average size of haplochromis tends to increase with depth. Catch rates for species other than haplochromis were fairly similar for the codends tested, although there were indications of lower catches in small mesh coderlds fished through dense haplochromis concentrations. For haplochromis fished with 64 and 38 mm eodends, the estimated 50% retention lengths were 13.6 and 8.0 cm, respectively. The predicted value for the 19 mm codend was 4.5 cm.
Resumo:
This paper includes a short report on preliminary midwater hauls with a frame trawl. The object is (a) to study the relationship between the vertical distribution of pelagic fish and the scattering layer, and (b) to find out if certain species, which at times occur abundantly in the bottom-trawl on the shallow-water frontiers of the scattering layer, might extend into offshore waters to constitute an important pelagic resource.
Resumo:
Electrolysis is the most mature form of hydrogen production. Unfortunately, water electrolysis has not yet achieved the efficiency and the cost levels required for any practical application. In order to enhance the current density, modification of the electrolyte and the electrode morphology are the most popular approaches. Recently there have been numerous reports on how to improve the efficiency of hydrogen production by water splitting [1-3]. On the electrode side, the use of non-platinum high efficiency electrode materials for water splitting will provide a promising future for the hydrogen economy. An ideal electrode for water electrolysis should have good permeability to water and gas. It should also offer good electrical properties with a long life. A porous graphite plate, when coated with titania, for example, is known to provide a simple and economical electrode for water electrolysis [4]. © 2010 IEEE.
Resumo:
Concerns over climate change mean engineers need to understand the greenhouse gas emissions associated with infrastructure projects. Standard coefficients are increasingly used to calculate the embodied emissions of construction materials, but these are not generally appropriate to inherently variable earthworks. This paper describes a new tool that takes a bottom-up approach to calculating carbon dioxide emissions from earthworks operations. In the case of bulk earthworks this is predominantly from the fuel used by machinery moving materials already on site. Typical earthworks solutions are explored along with the impact of using manufactured materials such as lime.
Resumo:
This paper presents experimental optimization of number and geometry of nanotube electrodes in a liquid crystal media from wavefront aberrations for realizing nanophotonic devices. The refractive-index gradient profiles from different nanotube geometries-arrays of one, three, four, and five-were studied along with wavefront aberrations using Zernike polynomials. The optimizations help the device to make application in the areas of voltage reconfigurable microlens arrays, high-resolution displays, wavefront sensors, holograms, and phase modulators. © 2012 Optical Society of America.
Resumo:
This paper reports the modeling and characterization of interdigitated rows of carbon nanotube electrodes used to address a liquid crystal media. Finite Element Method modeling of the nanotube arrays was performed to analyze the static electric Fields produced to Find suitable electrode geometry. A device was fabricated based on the simulation results and electro optics characteristics of the device are presented. This Finding has applications in the development of micron and submicron pixels, precise beem steering and nanotube based active back planes.
Resumo:
High-frequency ultrasound is needed for medical imaging with high spatial resolution. A key issue in the development of ultrasound imaging arrays to operate at high frequencies (≥30 MHz) is the need for photolithographic patterning of array electrodes. To achieve this directly on 1-3 piezocomposite, the material requires not only planar, parallel, and smooth surfaces, but also an epoxy composite filler that is resistant to chemicals, heat, and vacuum. This paper reports, first, on the surface finishing of 1-3 piezocomposite materials by lapping and polishing. Excellent surface flatness has been obtained, with an average surface roughness of materials as low as 3 nm and step heights between ceramic/polymer of ∼80 nm. Subsequently, high-frequency array elements were patterned directly on top of these surfaces using a photolithography process. A 30-MHz linear array electrode pattern with 50-μm element pitch has been patterned on the lapped and polished surface of a high-frequency 1-3 piezocomposite. Excellent electrode edge definition and electrical contact to the composite were obtained. The composite has been lapped to a final thickness of ∼55 μm. Good adhesion of electrodes on the piezocomposite has been achieved and electrical impedance measurements have demonstrated their basic functionality. The array was then packaged, and acoustic pulse-echo measurements were performed. These results demonstrate that direct patterning of electrodes by photolithography on 1-3 piezocomposite is feasible for fabrication of high-frequency ultrasound arrays. Furthermore, this method is more conducive to mass production than other reported array fabrication techniques.
Resumo:
We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.