633 resultados para Bosonic Strings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small deviations from purely bosonic behaviour of trapped atomic Bose-Einstein condensates are investigated with the help of the quon algebra, which interpolates between bosonic and fermionic statistics. A previously developed formalism is employed to obtain a generalized version of the Gross-Pitaeviskii equation. The depletion of the amount of condensed atoms for the case of repulsive forces between atoms in the trap can be accounted for by a universal fitting of the deformation parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter, an entropy operator for the general unitary SU(1, 1) TFD formulation is proposed and used to lead a bosonic system from zero to finite temperature. Namely, considering the closed bosonic string as the target system, the entropy operator is used to construct the thermal vacuum. The behaviour of such a state under the breve conjugation rules is analyzed and it was shown that the breve conjugation does not affect the thermal effects. From this thermal vacuum the thermal energy, the entropy and the free energy of the closed bosonic string are calculated and the appropriated thermal distribution for the system is found after the free energy minimization. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We suggest a time-dependent dynamical mean-field-hydrodynamic model for the collapse of a trapped boson-fermion condensate and perform numerical simulation based on it to understand some aspects of the experiment by Modugno et al. [Science 297, 2240 (2002)] on the collapse of the fermionic condensate in the K-40-Rb-87 mixture. We show that the mean-field model explains the formation of a stationary boson-fermion condensate at zero temperature with relative sizes compatible with experiment. This model is also found to yield a faithful representation of the collapse dynamics in qualitative agreement with experiment. In particular we consider the collapse of the fermionic condensate associated with (a) an increase of the number of bosonic atoms as in the experiment and (b) an increase of the attractive boson-fermion interaction using a Feshbach resonance. Suggestion for experiments of fermionic collapse using a Feshbach resonance is made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large back-to-back correlations of observable fermion-anti-fermion pairs are predicted to appear, if the mass of the fermions is modified in a thermalized medium. The back-to-back correlations of protons and anti-protons are experimentally observable in ultra-relativistic heavy ion collisions, similarly to the Andreev reflection of elections off the boundary of a superconductor. While quantum statistics suppresses the probability of observing pairs of fermions with nearby momenta, the fermionic back-to-back correlations are positive and of similar strength to bosonic back-to-back correlations. (C) 2001 Elsevier B.V. B,V, All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the pure spinor formalism for the superstring, the vertex operator for the first massive states of the open superstring is constructed in a manifestly super-Poincare covariant manner. This vertex operator describes a massive spin-two multiplet in terms of ten-dimensional superfields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by Ooguri and Vafa, we study superstrings in flat R-4 in a constant self-dual graviphoton background. The supergravity equations of motion are satisfied in this background which deforms the N = 2 d = 4 flat space super-Poincare algebra to another algebra with eight supercharges. A D-brane in this space preserves a quarter of the supercharges; i.e. N = 1/2 supersymmetry is realized linearly, and the remaining N = 3/2 supersymmetry is realized nonlinearly. The theory on the brane can be described as a theory in noncommutative superspace in which the chiral fermionic coordinates theta(alpha) of N = 1 d = 4 superspace are not Grassman variables but satisfy a Clifford algebra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the time-dependent mean-field Cross-Pitaevskii equation to study the formation of a dynamically-stabilized dissipation managed bright soliton in a quasi-one dimensional Bose-Einstein condensate (BEC). Because of three-body recombination of bosonic atoms to molecules, atoms are lost (dissipated) from a BEC. Such dissipation leads to the decay of a BEC soliton. We demonstrate by a perturbation procedure that an alimentation of atoms from an external source to the BEC may compensate for the dissipation loss and lead to a dynamically-stabilized soliton. The result of the analytical perturbation method is in excellent agreement with mean-field numerics. It seems possible to obtain such a dynamically stabilized BEC soliton without dissipation in laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A classical action for open superstring field theory has been proposed which does not suffer from contact term problems. After generalizing this action to include the non-GSO projected states of the Neveu-Schwarz string, the pure tachyon contribution to the tachyon potential is explicitly computed. The potential has a minimum of V = 1/32g(2) which is 60% of the predicted exact minimum of V = 1/2 pi(2)g(2) from D-brane arguments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is proven that the pure spinor superstring in an AdS(5) x S-5 background remains conformally invariant at one loop level in the sigma model perturbation theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter a topological interpretation for the string thermal vacuum in the thermo field dynamics (TFD) approach is given. As a consequence, the relationship between the imaginary time and TFD formalisms is achieved when both are used to study closed strings at finite temperature. The TFD approach starts by duplicating the system's degrees of freedom, defining an auxiliary (tilde) string. In order to lead the system to finite temperature a Bogoliubov transformation is implemented. We show that the effect of this transformation is to glue together the string and the tilde string to obtain a torus. The thermal vacuum appears as the boundary state for this identification. Also, from the thermal state condition, a Kubo-Martin-Schwinger condition for the torus topology is derived. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bose-Einstein condensation (BEC) in two dimensions (2D) (e.g., to describe the quasi-2D cuprates) is suggested as the possible mechanism widely believed to underlie superconductivity in general. A crucial role is played by nonzero center-of-mass momentum Cooper pairs (CPs) usually neglected in BCS theory. Also vital is the unique linear dispersion relation appropriate to weakly-coupled bosonic CPs moving in the Fermi sea-rather than in vacuum where the dispersion would be quadratic but only for very strong coupling, and for which BEC is known to be impossible in 2D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is proven that the classical pure spinor superstring in an AdS(5) X S-5 background has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et at. for the classical Green-Schwarz superstring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted (c) over cap = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action.