982 resultados para Boson-fermion correspondence
Resumo:
In this paper, the concept of Matching Parallelepiped (MP) is presented. It is shown that the volume of the MP can be used as an additional measure of `distance' between a pair of candidate points in a matching algorithm by Relaxation Labeling (RL). The volume of the MP is related with the Epipolar Geometry and the use of this measure works as an epipolar constraint in a RL process, decreasing the efforts in the matching algorithm since it is not necessary to explicitly determine the equations of the epipolar lines and to compute the distance of a candidate point to each epipolar line. As at the beginning of the process the Relative Orientation (RO) parameters are unknown, a initial matching based on gradient, intensities and correlation is obtained. Based on this set of labeled points the RO is determined and the epipolar constraint included in the algorithm. The obtained results shown that the proposed approach is suitable to determine feature-point matching with simultaneous estimation of camera orientation parameters even for the cases where the pair of optical axes are not parallel.
Resumo:
We update the indirect bounds on anomalous triple gauge couplings coming from the non-universal one-loop contributions to the Z → bb width. These bounds, which are independent of the Higgs boson mass, are in agreement with the standard model predictions for the gauge boson self-couplings since the present value of R(b) agrees fairly well with the theoretical estimates. Moreover, these indirect constraints on Δg(Z)/1 and g(Z)/5 are most stringent than the present direct bounds on these quantities, while the indirect limit on λ(Z) is weaker than the available experimental data.
Resumo:
We calculate the effective action for quantum electrodynamics (QED) in D=2,3 dimensions at the quadratic approximation in the gauge fields. We analyze the analytic structure of the corresponding nonlocal boson propagators nonperturbatively in k/m. In two dimensions for any nonzero fermion mass, we end up with one massless pole for the gauge boson. We also calculate in D=2 the effective potential between two static charges separated by a distance L and find it to be a linearly increasing function of L in agreement with the bosonized theory (massive sine-Gordon model). In three dimensions we find nonperturbatively in k/m one massive pole in the effective bosonic action leading to screening. Fitting the numerical results we derive a simple expression for the functional dependence of the boson mass upon the dimensionless parameter e2/m. ©2000 The American Physical Society.
Resumo:
We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the minimal supersymmetric standard model. We perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is re-emphasized. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.
Resumo:
We investigate the possibility that four-fermion contact interactions give rise to the observed deviation from the standard model prediction for the weak charge of cesium, through one-loop contributions. We show that the presence of loops involving the third generation quarks can explain such a deviation.
Resumo:
By considering left-right (L-R) asymmetries we study the capabilities of lepton colliders in searching for new exotic vector bosons. Specifically we study the effect of a doubly charged bilepton boson and an extra neutral vector boson appearing in a 3-3-1 model on the L-R asymmetries for the processes e-e- → e-e-, μ-μ- → μ-μ- and e-μ- → e-μ- and show that these asymmetries are very sensitive to these new contributions and that they are in fact powerful tools for discovery of this sort of vector bosons.
Resumo:
The lower bound masses of the ground-state relativistic three-boson system in 1 + 1, 2 + 1 and 3 + 1 spacetime dimensions are obtained. We have considered a reduction of the ladder Bethe-Salpeter equation to the lightfront in a model with renormalized two-body contact interaction. The lower bounds are deduced with the constraint of reality of the two-boson subsystem mass. It is verified that, in some cases, the lower bound approaches the ground-state binding energy. The corresponding non-relativistic limits are also verified.
Resumo:
The reduction of the two-fermion Bethe-Salpeter equation in the framework of light-front dynamics is studied for the Yukawa model. It yields auxiliary three-dimensional quantities for the transition matrix and the bound state. The arising effective interaction can be perturbatively expanded in powers of the coupling constant gs allowing a defined number of boson exchanges; it is divergent and needs renormalization; it also includes the instantaneous term of the Dirac propagator. One possible solution of the renormalization problem of the boson exchanges is shown to be provided by expanding the effective interaction beyond single boson exchange. The effective interaction in ladder approximation up to order g4 s is discussed in detail. It is shown that the effective interaction naturally yields the box counterterm required to be introduced ad hoc previously. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary three-dimensional quantities.
Resumo:
We consider the contributions to the neutrinoless double beta decays in a SU(3)L⊗U(1)N electroweak model. We show that for a range of parameters in the model there are diagrams involving vector-vector-scalar and trilinear scalar couplings which can be potentially as contributing as the light massive Majorana neutrino exchange one. We use these contributions to obtain constraints upon some mass scales of the model, such as the masses of the new charged vector and scalar bosons. We also consider briefly the decay in which, in addition to the two electrons, a Majoron-like boson is emitted. ©2001 The American Physical Society.
Resumo:
We consider a scalar field theory on AdS in both minimally and non-minimally coupled cases. We show that there exist constraints which arise in the quantization of the scalar field theory on AdS which cannot be reproduced through the usual AdS/CFT prescription. We argue that the usual energy, defined through the stress-energy tensor, is not the natural one to be considered in the context of the AdS/CFT correspondence. We analyze a new definition of the energy which makes use of the Noether current corresponding to time displacements in global coordinates. We compute the new energy for Dirichlet, Neumann and mixed boundary conditions on the scalar field and for both the minimally and non-minimally coupled cases. Then, we perform the quantization of the scalar field theory on AdS showing that, for 'regular' and 'irregular' modes, the new energy is conserved, positive and finite. We show that the quantization gives rise, in a natural way, to a generalized AdS/CFT prescription which maps to the boundary all the information contained in the bulk. In particular, we show that the divergent local terms of the on-shell action contain information about the Legendre transformed generating functional, and that the new constraints for which the irregular modes propagate in the bulk are the same constraints for which such divergent local terms cancel out. In this situation, the addition of counterterms is not required. We also show that there exist particular cases for which the unitarity bound is reached, and the conformai dimension becomes independent of the effective mass. This phenomenon has no bulk counterpart.
Resumo:
We analyze the potential of the next generation of e+e- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e., e+e- →ff̃G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using the full tree level contributions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96 (0.86) up to 4.1 (3.3) TeV at a 2 (5)σ level, depending on the number of extra dimensions. ©2001 The American Physical Society.
Resumo:
In this work we prove in a precise way that the soldering formalism can be applied to the Srivastava chiral boson (SCB), in contradiction with some results appearing in the literature. We promote a canonical transformation that shows directly that the SCB is composed of two Floreanini-Jackiw particles with the same chirality in which the spectrum is a vacuumlike one. As another conflicting result, we prove that a Wess-Zumino (WZ) term used in the literature consists of a scalar field, once again denying the assertion that the WZ term adds a new degree of freedom to the SCB theory in order to modify the physics of the system. © 2001 The American Physical Society.
Resumo:
We consider a scalar field theory on AdS, and show that the usual AdS/CFT prescription is unable to map to the boundary a part of the information arising from the quantization in the bulk. We propose a solution to this problem by defining the energy of the theory in the bulk through the Noether current corresponding to time displacements, and, in addition, by introducing a proper generalized AdS/CFT prescription. We also show how this extended formulation could be used to consistently describe double-trace interactions in the boundary. The formalism is illustrated by focusing on the non-minimally coupled case using Dirichlet boundary conditions. © 2004 Published by Elsevier B.V.
Resumo:
Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study mixing-demixing in a degenerate fermion-fermion mixture (DFFM). It is demonstrated that with the increase of interspecies repulsion and/or trapping frequencies, a mixed state of a DFFM could turn into a fully demixed state in both three-dimensional spherically symmetric as well as quasi-one-dimensional configurations. Such a demixed state of a DFFM could be experimentally realized by varying an external magnetic field near a fermion-fermion Feshbach resonance, which will result in an increase of interspecies fermion-fermion repulsion, and/or by increasing the external trap frequencies. © 2006 The American Physical Society.