844 resultados para Blood Pressure Changes
Resumo:
This study described the relationship of sexual maturation and blood pressure in a sample (n = 361) of white females, ages seven through 18, attending public schools in a defined area of Central Texas during October through December, 1984. Other correlates of blood pressure were also described for this sample.^ A survey was performed to obtain the data on height, weight, body mass, pulse rate, upper arm circumference and length, and blood pressure. Each subject self-assessed her secondary sex characteristics (breast and pubic hair) according to drawings of the Tanner stages of maturation. The subjects were interviewed to obtain data on personal health habits and menstrual status. Student age, ethnic group and place of residence were abstracted from school records. Parents or guardians of the subjects responded to a questionnaire pertaining to parental and subject health history and parents' occupation and educational attainment.^ In the simple linear regression analysis, sexual maturation and variables of body size were significantly (p < 0.001) and positively associated with systolic and fourth- and fifth-phase diastolic blood pressure. The demographic and socioeconomic variables were not sufficiently variant in this population to have differential effects on the relation between blood pressure and maturation. Stepwise multiple regression was used to assess the contribution of sexual maturation to the variance of blood pressure after accounting for the variables of body size. Sexual maturation (breast stage) along with weight, height and body mass remained in the multiple regression models for fourth- and fifth-phase diastolic blood pressure. Only height and body mass remained in the regression model for systolic blood pressure; sexual maturation did not contribute more to the explanation of the systolic blood pressure variance.^ The association of sexual maturation with blood pressure level was established in this sample of young white females. More research is needed first, to determine if this relationship prevails in other populations of young females, and second, to determine the relationship of sexual maturation sequence and change with the change of blood pressure during childhood and adolescence. ^
Resumo:
The relationship between degree of diastolic blood pressure (DBP) reduction and mortality was examined among hypertensives, ages 30-69, in the Hypertension Detection and Follow-up Program (HDFP). The HDFP was a multi-center community-based trial, which followed 10,940 hypertensive participants for five years. One-year survival was required for inclusion in this investigation since the one-year annual visit was the first occasion where change in blood pressure could be measured on all participants. During the subsequent four years of follow-up on 10,052 participants, 568 deaths occurred. For levels of change in DBP and for categories of variables related to mortality, the crude mortality rate was calculated. Time-dependent life tables were also calculated so as to utilize available blood pressure data over time. In addition, the Cox life table regression model, extended to take into account both time-constant and time-dependent covariates, was used to examine the relationship change in blood pressure over time and mortality.^ The results of the time-dependent life table and time-dependent Cox life table regression analyses supported the existence of a quadratic function which modeled the relationship between DBP reduction and mortality, even after adjusting for other risk factors. The minimum mortality hazard ratio, based on a particular model, occurred at a DBP reduction of 22.6 mm Hg (standard error = 10.6) in the whole population and 8.5 mm Hg (standard error = 4.6) in the baseline DBP stratum 90-104. After this reduction, there was a small increase in the risk of death. There was not evidence of the quadratic function after fitting the same model using systolic blood pressure. Methodologic issues involved in studying a particular degree of blood pressure reduction were considered. The confidence interval around the change corresponding to the minimum hazard ratio was wide and the obtained blood pressure level should not be interpreted as a goal for treatment. Blood pressure reduction was attributed, not only to pharmacologic therapy, but also to regression to the mean, and to other unknown factors unrelated to treatment. Therefore, the surprising results of this study do not provide direct implications for treatment, but strongly suggest replication in other populations. ^
Resumo:
BACKGROUND: This observational research study investigated the association of cardiorespiratory fitness and weight status with repeated measures of 24-hr ambulatory blood pressure (24-hr ABP). Little is known about these associations and few data exist examining the interaction between cardiorespiratory fitness and weight status and the contributions of each on 24-hr ABP in youth. ^ METHODS: This research study used secondary analysis data from the "Adolescent Blood Pressure and Anger: Ethnic Differences" study. This current study sample included 374 African-American, Anglo-American, and Mexican-American adolescents 11-16 years of age. Mixed-effects models were used for testing the relationship between weight status and cardiorespiratory fitness and repeated measures of ambulatory blood pressure over 24 hours (24-hr ABP). Weight status was categorized into "normal weight" (BMI<85th percentile), "overweight" (85th≤BMI<95th), and "obese" (BMI≥95th). Cardiorespiratory fitness, determined by heart rate recovery (HRR), was defined as the difference between heart rate at peak exercise and heart rate at two minutes post-exercise, as measured by a height-adjusted step test and stratified into two groups: low and high fitness, using a median split. Ambulatory blood pressure (ABP) was monitored for a 24-hr period on a school day using the Spacelabs ambulatory monitor (Model 90207). Blood pressure and heart rate were recorded at 30 minute intervals throughout the day of recording and at 60 minute intervals during sleep. ^ RESULTS: No significant associations were found between weight status and mean 24-hr systolic blood pressure (SBP) or mean arterial pressure (MAP). A significant and inverse association between weight status and mean 24-hr diastolic blood pressure (DBP) was revealed. Cardiorespiratory fitness was significantly and inversely associated with mean 24-hr ABP. High fitness adolescents had significantly lower mean 24-hr SPB, DBP, and MAP measurements than low fitness adolescents. Compared to low fitness adolescents, high fitness adolescents had 1.90 mmHg, 1.16 mmHg, and 1.68 mmHg lower mean 24-hr SBP, DBP, and MAP, respectively. Additionally, high fitness appeared to afford protection from higher mean 24-hr SBP and MAP, irrespective of weight status. Among normal weight adolescents, low fitness resulted in higher mean 24-hr SBP and MAP, compared to their fit counterparts. Among adolescents categorized as high fitness, increasing weight status did not appear to result in higher mean 24-hr SBP or MAP. Cardiorespiratory fitness, rather than weight status, appeared to be a more dominant predictor of mean 24-hr SBP and MAP. ^ CONCLUSIONS: To our knowledge, this research is the first study to investigate the independent and combined contributions of cardiorespiratory fitness and weight status on 24-hr ABP, all objectively measured. The results of this study may potentially guide and inform future research. It appears that early cardiovascular disease (CVD) prevention should focus on improving cardiorespiratory fitness levels among all adolescents, particularly those adolescents least fit, regardless of their weight status, while obesity prevention efforts continue.^
Resumo:
Cambios en la presión arterial tras un beta-bloqueante.
Resumo:
Angiotensin produced systemically or locally in tissues such as the brain plays an important role in the regulation of blood pressure and in the development of hypertension. We have established transgenic rats [TGR(ASrAOGEN)] expressing an antisense RNA against angiotensinogen mRNA specifically in the brain. In these animals, the brain angiotensinogen level is reduced by more than 90% and the drinking response to intracerebroventricular renin infusions is decreased markedly compared with control rats. Blood pressure of transgenic rats is lowered by 8 mmHg (1 mmHg = 133 Pa) compared with control rats. Crossbreeding of TGR(ASrAOGEN) with a hypertensive transgenic rat strain exhibiting elevated angiotensin II levels in tissues results in a marked attenuation of the hypertensive phenotype. Moreover, TGR(ASrAOGEN) exhibit a diabetes insipidus-like syndrome producing an increased amount of urine with decreased osmolarity. The observed reduction in plasma vasopressin by 35% may mediate these phenotypes of TGR(ASrAOGEN). This new animal model presenting long-term and tissue-specific down-regulation of angiotensinogen corroborates the functional significance of local angiotensin production in the brain for the central regulation of blood pressure and for the pathogenesis of hypertension.
Resumo:
To investigate the functional role of different α1-adrenergic receptor (α1-AR) subtypes in vivo, we have applied a gene targeting approach to create a mouse model lacking the α1b-AR (α1b−/−). Reverse transcription–PCR and ligand binding studies were combined to elucidate the expression of the α1-AR subtypes in various tissues of α1b +/+ and −/− mice. Total α1-AR sites were decreased by 98% in liver, 74% in heart, and 42% in cerebral cortex of the α1b −/− as compared with +/+ mice. Because of the large decrease of α1-AR in the heart and the loss of the α1b-AR mRNA in the aorta of the α1b−/− mice, the in vivo blood pressure and in vitro aorta contractile responses to α1-agonists were investigated in α1b +/+ and −/− mice. Our findings provide strong evidence that the α1b-AR is a mediator of the blood pressure and the aorta contractile responses induced by α1 agonists. This was demonstrated by the finding that the mean arterial blood pressure response to phenylephrine was decreased by 45% in α1b −/− as compared with +/+ mice. In addition, phenylephrine-induced contractions of aortic rings also were decreased by 25% in α1b−/− mice. The α1b-AR knockout mouse model provides a potentially useful tool to elucidate the functional specificity of different α1-AR subtypes, to better understand the effects of adrenergic drugs, and to investigate the multiple mechanisms involved in the control of blood pressure.
Resumo:
The classically recognized functions of the renin–angiotensin system are mediated by type 1 (AT1) angiotensin receptors. Whereas man possesses a single AT1 receptor, there are two AT1 receptor isoforms in rodents (AT1A and AT1B) that are products of separate genes (Agtr1a and Agtr1b). We have generated mice lacking AT1B (Agtr1b −/−) and both AT1A and AT1B receptors (Agtr1a −/−Agtr1b −/−). Agtr1b −/− mice are healthy, without an abnormal phenotype. In contrast, Agtr1a −/−Agtr1b −/− mice have diminished growth, vascular thickening within the kidney, and atrophy of the inner renal medulla. This phenotype is virtually identical to that seen in angiotensinogen-deficient (Agt−/−) and angiotensin-converting enzyme-deficient (Ace −/−) mice that are unable to synthesize angiotensin II. Agtr1a −/−Agtr1b −/− mice have no systemic pressor response to infusions of angiotensin II, but they respond normally to another vasoconstrictor, epinephrine. Blood pressure is reduced substantially in the Agtr1a −/− Agtr1b −/− mice and following administration of an angiotensin converting enzyme inhibitor, their blood pressure increases paradoxically. We suggest that this is a result of interruption of AT2-receptor signaling. In summary, our studies suggest that both AT1 receptors promote somatic growth and maintenance of normal kidney structure. The absence of either of the AT1 receptor isoforms alone can be compensated in varying degrees by the other isoform. These studies reaffirm and extend the importance of AT1 receptors to mediate physiological functions of the renin–angiotensin system.
Resumo:
Objective: To examine the possibility that low birth weight is a feature of the inherited predisposition to high blood pressure.
Resumo:
Objective: To determine whether the inverse relation between blood pressure and all cause mortality in elderly people over 85 years of age can be explained by adjusting for health status, and to determine whether high blood pressure is a risk factor for mortality when the effects of poor health are accounted for.