816 resultados para Bitterroot River, Missoula and Ravalli County, Montana, USA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: A Statistical abstract supplement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accompanied by "Appendix" (13v. in 11. illus. (part col.) maps (part col.) 27cm.) Published: Atlanta, 1963.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Errata sheet follows index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Title Varies: Resources of Montana

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the cultural value systems of nations is a key factor in anticipating the behaviour of business managers and employees in a specific business environment. Many research studies have acknowledged the impact of culture on communication across nations and its impact on business operations, however no study has attempted to measure and quantify the cultural orientations of people originating from one nation, but working in two different national settings. This study adopted Kluckhohn and Strodtbeck's framework to examine cultural dimensions of a total of 580 Indian respondents comprising two groups: 429 Indian natives living and working in India and 151 Indian migrants living and working in the USA. It initially compares the cultural orientations of the total population of each of the two groups and then examines cultural differences in the same based on demographic characteristics consisting of occupation, gender, age, and level of education. The study found significant cultural value differences between the two groups on both levels of analysis. The theoretical and practical implications of these findings are discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to develop a model to predict transport and fate of gasoline components of environmental concern in the Miami River by mathematically simulating the movement of dissolved benzene, toluene, xylene (BTX), and methyl-tertiary-butyl ether (MTBE) occurring from minor gasoline spills in the inter-tidal zone of the river. Computer codes were based on mathematical algorithms that acknowledge the role of advective and dispersive physical phenomena along the river and prevailing phase transformations of BTX and MTBE. Phase transformations included volatilization and settling. ^ The model used a finite-difference scheme of steady-state conditions, with a set of numerical equations that was solved by two numerical methods: Gauss-Seidel and Jacobi iterations. A numerical validation process was conducted by comparing the results from both methods with analytical and numerical reference solutions. Since similar trends were achieved after the numerical validation process, it was concluded that the computer codes algorithmically were correct. The Gauss-Seidel iteration yielded at a faster convergence rate than the Jacobi iteration. Hence, the mathematical code was selected to further develop the computer program and software. The model was then analyzed for its sensitivity. It was found that the model was very sensitive to wind speed but not to sediment settling velocity. ^ A computer software was developed with the model code embedded. The software was provided with two major user-friendly visualized forms, one to interface with the database files and the other to execute and present the graphical and tabulated results. For all predicted concentrations of BTX and MTBE, the maximum concentrations were over an order of magnitude lower than current drinking water standards. It should be pointed out, however, that smaller concentrations than the latter reported standards and values, although not harmful to humans, may be very harmful to organisms of the trophic levels of the Miami River ecosystem and associated waters. This computer model can be used for the rapid assessment and management of the effects of minor gasoline spills on inter-tidal riverine water quality. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of mangrove vegetation in two distinct basins of Florida Coastal Everglades (FCE), Shark River estuary and Taylor River Slough, represent unique opportunities to test hypotheses that root dynamics respond to gradients of resources, regulators, and hydroperiod. We propose that soil total phosphorus (P) gradients in these two coastal basins of FCE cause specific patterns in belowground biomass allocation and net primary productivity that facilitate nutrient acquisition, but also minimize stress from regulators and hydroperiod in flooded soil conditions. Shark River basin has higher P and tidal hydrology with riverine mangroves, in contrast to scrub mangroves of Taylor basin with more permanent flooding and lower P across the coastal landscape. Belowground biomass (0–90 cm) of mangrove sites in Shark River and Taylor River basins ranged from 2317 to 4673 g m-2, with the highest contribution (62–85%) of roots in the shallow root zone (0–45 cm) compared to the deeper root zone (45–90 cm). Total root productivity did not vary significantly among sites and ranged from 407 to 643 g m-2 y-1. Root production in the shallow root zone accounted for 57–78% of total production. Root turnover rates ranged from 0.04 to 0.60 y-1 and consistently decreased as the root size class distribution increased from fine to coarse roots, indicating differences in root longevity. Fine root biomass was negatively correlated with soil P density and frequency of inundation, whereas fine root turnover decreased with increasing soil N:P ratios. Lower P availability in Taylor River basin relative to Shark River basin, along with higher regulator and hydroperiod stress, confirms our hypothesis that interactions of stress from resource limitation and long duration of hydroperiod account for higher fine root biomass along with lower fine root production and turnover. Because fine root production and organic matter accumulation are the primary processes controlling soil formation and accretion in scrub mangrove forests, root dynamics in the P-limited carbonate ecosystem of south Florida have a major controlling role as to how mangroves respond to future impacts of sealevel rise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yeast populations in the Shark River Slough of the Florida Everglades, USA, were examined during a 3-year period (2002–2005) at six locations ranging from fresh water marshes to marine mangroves. Seventy-four described species (33 ascomycetes and 41 basidiomycetes) and an approximately equal number of undescribed species were isolated during the course of the investigation. Serious human pathogens, such as Candida tropicalis, were not observed, which indicates that their presence in coastal waters is due to sources of pollution. Some of the observed species were widespread throughout the fresh water and marine habitats, whereas others appeared to be habitat restricted. Species occurrence ranged from prevalent to rare. Five representative unknown species were selected for formal description. The five species comprise two ascomycetes: Candida sharkiensis sp. nov. (CBS 11368T) and Candida rhizophoriensis sp. nov. (CBS 11402T) (Saccharomycetales, Metschnikowiaceae), and three basidiomycetes: Rhodotorula cladiensis sp. nov. (CBS 10878T) in the Sakaguchia clade (Cystobasidiomycetes), Rhodotorula evergladiensis sp. nov. (CBS 10880T) in the Rhodosporidium toruloides clade (Microbotryomycetes, Sporidiobolales) and Cryptococcus mangaliensis sp. nov. (CBS 10870T) in the Bulleromyces clade (Agaricomycotina, Tremellales).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep well injection into non-potable saline aquifers of treated domestic wastewater has been used in Florida for decades as a safe and effective alternative to ocean outfall disposal. The objectives of this study were to determine the fate and transport of injected wastewater at two deep well injection sites in Miami Dade County, Florida, USA. Detection of ammonium in the Middle Confining units of the Floridan aquifer above the injection zone at both sites has been interpreted as evidence of upward migration of injected wastewater, posing a risk to underground sources of drinking water. Historical water quality data, including ammonia, chloride, temperature, and pH from existing monitoring wells at both sites from 1983 to 2008, major ions collected monthly from 2006 and 2008, and a synoptic sampling event for stable isotopes, tritium, and dissolved gases in 2008, were used to determine the source of ammonium in groundwater and possible migration pathways. Geochemical modeling was used to determine possible effects of injected wastewater on native water and aquifer matrix geochemistry. Injected wastewater was determined to be the source of elevated ammonium concentrations above ambient water levels, based on the results of major ion concentrations, tritium, dissolved noble gases and 15N isotopes analyses. Various possible fluid migration pathways were identified at the sites. Data for the south site suggest buoyancy-driven vertical pathways to overlying aquifers bypassing the confining units, with little mixing of injected wastewater with native water as it migrated upward. Once it is introduced into an aquifer, the injectate appeared to migrate advectively with the regional groundwater flow. Geochemical modeling indicated that CO 2-enriched injected wastewater allowed for carbonate dissolution along the vertical pathways, enhancing permeability along these flowpaths. At the north site, diffusive upward flow through the confining units or offsite vertical pathways were determined to be possible, however no evidence was detected for any on-site confining unit bypass pathway. No evidence was observed at either site of injected wastewater migration to the Upper Floridan aquifer, which is used as a municipal water supply and for aquifer storage and recovery.