917 resultados para Birds in the Bible.
Resumo:
The chicken represents the best-characterized animal model for B cell development in the so-called gut-associated lymphoid tissue (GALT) and the molecular processes leading to B cell receptor diversification in this species are well investigated. However, the mechanisms regulating B cell development and homeostasis in GALT species are largely unknown. Here we investigate the role played by the avian homologue of B cell-activating factor of the tumor necrosis factor family (BAFF). Flow cytometric analysis showed that the receptor for chicken B cell-activating factor of the tumor necrosis factor family (chBAFF) is expressed by mature and immature B cells. Unlike murine and human BAFF, chBAFF is primarily produced by B cells both in peripheral lymphoid organs and in the bursa of Fabricius, the chicken's unique primary lymphoid organ. In vitro and in vivo studies revealed that chBAFF is required for mature B cell survival. In addition, in vivo neutralization with a decoy receptor led to a reduction of the size and number of B cell follicles in the bursa, demonstrating that, in contrast to humans and mice, in chickens BAFF is also required for the development of immature B cells. Collectively, we show that chBAFF has phylogenetically conserved functions in mature B cell homeostasis but displays unique and thus far unknown properties in the regulation of B cell development in birds.
Resumo:
While the adaptive function of black eumelanin-based coloration is relatively well known, the function of reddish-brown pheomelanin-based coloration is still unclear. Only a few studies have shown or suggested that the degree of reddish-brownness is associated with predator-prey relationships, reproductive parameters, growth rate and immunity. To gain insight into the physiological correlates of melanin-based coloration, I collected barn owl (Tyto alba) cadavers and examined the covariation between this colour trait and ovary size, an organ that increases in size before reproduction. A relationship is expected because melanin-based coloration often co-varies with sexual activity. The results showed that reddish-brown juveniles had larger ovaries than whiter juveniles particularly in individuals in poor condition and outside the breeding season, while in birds older than 2 years lightly coloured females had larger ovaries than reddish-brown conspecifics. As barn owls become less reddish-brown between the first and second year of age, the present study suggests that reddish-brown pheomelanic and whitish colorations are associated with juvenile- and adult-specific adaptations, respectively.
Resumo:
Melanin is the most common pigment in animal integuments and is responsible for some of the most striking ornaments. A central tenet of sexual selection theory states that melanin-based traits can signal absolute individual quality in any environment only if their expression is condition-dependent. Significant costs imposed by an ornament would ensure that only the highest quality individuals display the most exaggerated forms of the signal. Firm evidence that melanin-based traits can be condition-dependent is still rare in birds. In an experimental test of this central assumption, we report condition-dependent expression of a melanin-based trait in the Eurasian kestrel (Falco tinnunculus). We manipulated nestling body condition by reducing or increasing the number of nestlings soon after hatching. A few days before fledging, we measured the width of sub-terminal black bands on the tail feathers. Compared to nestlings from enlarged broods, individuals raised in reduced broods were in better condition and thereby developed larger sub-terminal bands. Furthermore, in 2 years, first-born nestlings also developed larger sub-terminal bands than their younger siblings that are in poorer condition. This demonstrates that expression of melanin-based traits can be condition-dependent.
Resumo:
Birds exhibit exceptional longevity and are thus regarded as a convenient model to study the intrinsic mechanisms of aging. The oxidative stress theory of aging suggests that individuals age because molecules, cells, tissues, organs, and, ultimately, animals accumulate oxidative damage over time. Accumulation of damage progressively reduces the level of antioxidant defences that are expected to decline with age. To test this theory, we measured the resistance of red blood cells to free radical attack in a captive population of greater flamingo (Phoenicopterus ruber roseus) of known age ranging from 0.3 to 45 years. We observed a convex relationship with young adults (12-20 years old) having greater resistance to oxidative stress than immature flamingos (5 months old) and old flamingos (30-45 years old). Our results suggest that the antioxidant detoxifying system must go through a maturation process before being completely functional. It then declines in older adults, supporting the oxidative theory of aging. Oxidative stress could hence play a significant role in shaping the pattern of senescence in a very long-lived bird species.
Resumo:
The adaptive function of melanin-based coloration is a long-standing debate. A recent genetic model suggested that pleiotropy could account for covariations between pigmentation, behaviour, morphology, physiology and life history traits. We explored whether the expression levels of genes belonging to the melanocortin system (MC1R, POMC, PC1/3, PC2 and the antagonist ASIP), which have many pleiotropic effects, are associated with melanogenesis (through variation in the expression of the genes MITF, SLC7A11, TYR, TYRP1) and in turn melanin-based coloration. We considered the tawny owl (Strix aluco) because individuals vary continuously from light to dark reddish, and thus, colour variation is likely to stem from differences in the levels of gene expression. We measured gene expression in feather bases collected in nestlings at the time of melanin production. As expected, the melanocortin system was associated with the expression of melanogenic genes and pigmentation. Offspring of darker reddish fathers expressed PC1/3 to lower levels but tended to express PC2 to higher levels. The convertase enzyme PC1/3 cleaves the POMC prohormone to obtain ACTH, while the convertase enzyme PC2 cleaves ACTH to produce α-melanin-stimulating hormone (α-MSH). ACTH regulates glucocorticoids, hormones that modulate stress responses, while α-MSH induces eumelanogenesis. We therefore conclude that the melanocortin system, through the convertase enzymes PC1/3 and PC2, may account for part of the interindividual variation in melanin-based coloration in nestling tawny owls. Pleiotropy may thus account for the covariation between phenotypic traits involved in social interactions (here pigmentation) and life history, morphology, behaviour and physiology.
Resumo:
Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in many birds. Feral pigeons (Columba livia) show two major melanin-based colorations: a red coloration due to pheomelanic pigment and a black coloration due to eumelanic pigment. Furthermore, within each color type, feral pigeons display continuous variation in the amount of melanin pigment present in the feathers, with individuals varying from pure white to a full dark melanic color. Coloration is highly heritable and it has been suggested that it is under natural or sexual selection, or both. Our objective was to investigate whether MC1R allelic variants are associated with plumage color in feral pigeons.We sequenced 888 bp of the coding sequence of MC1R among pigeons varying both in the type, eumelanin or pheomelanin, and the amount of melanin in their feathers. We detected 10 non-synonymous substitutions and 2 synonymous substitution but none of them were associated with a plumage type. It remains possible that non-synonymous substitutions that influence coloration are present in the short MC1R fragment that we did not sequence but this seems unlikely because we analyzed the entire functionally important region of the gene.Our results show that color differences among feral pigeons are probably not attributable to amino acid variation at the MC1R locus. Therefore, variation in regulatory regions of MC1R or variation in other genes may be responsible for the color polymorphism of feral pigeons.
Resumo:
ABSTRACT: BACKGROUND: A central question for ecologists is the extent to which anthropogenic disturbances (e.g. tourism) might impact wildlife and affect the systems under study. From a research perspective, identifying the effects of human disturbance caused by research-related activities is crucial in order to understand and account for potential biases and derive appropriate conclusions from the data. RESULTS: Here, we document a case of biological adjustment to chronic human disturbance in a colonial seabird, the king penguin (Aptenodytes patagonicus), breeding on remote and protected islands of the Southern ocean. Using heart rate (HR) as a measure of the stress response, we show that, in a colony with areas exposed to the continuous presence of humans (including scientists) for over 50 years, penguins have adjusted to human disturbance and habituated to certain, but not all, types of stressors. When compared to birds breeding in relatively undisturbed areas, birds in areas of high chronic human disturbance were found to exhibit attenuated HR responses to acute anthropogenic stressors of low-intensity (i.e. sounds or human approaches) to which they had been subjected intensely over the years. However, such attenuation was not apparent for high-intensity stressors (i.e. captures for scientific research) which only a few individuals experience each year. CONCLUSIONS: Habituation to anthropogenic sounds/approaches could be an adaptation to deal with chronic innocuous stressors, and beneficial from a research perspective. Alternately, whether penguins have actually habituated to anthropogenic disturbances over time or whether human presence has driven the directional selection of human-tolerant phenotypes, remains an open question with profound ecological and conservation implications, and emphasizes the need for more knowledge on the effects of human disturbance on long-term studied populations.
Resumo:
Aim Identifying climatic niche shifts and their drivers is important to accurately predict the risk of biological invasions. The niches of non-native plants and birds have recently been assessed in large-scale multi-species studies, but such large-scale tests are lacking for non-native reptiles and amphibians (herpetofauna). Furthermore, little is known about the factors contributing to niche shifts when they occur. Based on the occurrence of 71 reptile and amphibian species, we compared native and non-native realized niches in 101 invaded ranges at a worldwide scale and identified the factors that affect niche shifts. Location The world except the Antarctic. Methods We assessed climatic niche dynamics in a gridded environmental space allowing the quantification of niche overlap and expansion into climatic conditions not colonized by the species in their native range. We analyzed the factors affecting niche shifts using a model averaging approach based on generalized linear mixed-effects models. Results Approximately 57% of the invaded ranges (51% for amphibians and 61% for reptiles) showed niche shifts (≥10% expansion in the realized climatic niche). Island endemics, species introduced to Oceania and invaded ranges outside the native biogeographic realm showed a higher proportion of niche shifts. Niche shifts were more likely for species that had smaller native range sizes, were introduced earlier into a new range or invaded areas located at lower latitudes than the native range. Main conclusions The proportion of niche shifts for non-native herpetofauna was higher than those for Holarctic non-native plants and European non-native birds. The 'climate matching hypothesis' should be used with caution for species shifting their niche because it could underestimate the risk of their establishment.
Resumo:
Thyroid hormones are involved in the regulation of growth and metabolism in all vertebrates. Transthyretin is one of the extracellular proteins with high affinity for thyroid hormones which determine the partitioning of these hormones between extracellular compartments and intracellular lipids. During vertebrate evolution, both the tissue pattern of expression and the structure of the gene for transthyretin underwent characteristic changes. The purpose of this study was to characterize the position of Insectivora in the evolution of transthyretin in eutherians, a subclass of Mammalia. Transthyretin was identified by thyroxine binding and Western analysis in the blood of adult shrews, hedgehogs, and moles. Transthyretin is synthesized in the liver and secreted into the bloodstream, similar to the situation for other adult eutherians, birds, and diprotodont marsupials, but different from that for adult fish, amphibians, reptiles, monotremes, and Australian polyprotodont marsupials. For the characterization of the structure of the gene and the processing of mRNA for transthyretin, cDNA libraries were prepared from RNA from hedgehog and shrew livers, and full-length cDNA clones were isolated and sequenced. Sections of genomic DNA in the regions coding for the splice sites between exons 1 and 2 were synthesized by polymerase chain reaction and sequenced. The location of splicing was deduced from comparison of genomic with cDNA nucleotide sequences. Changes in the nucleotide sequence of the transthyretin gene during evolution are most pronounced in the region coding for the N-terminal region of the protein. Both the derived overall amino sequences and the N-terminal regions of the transthyretins in Insectivora were found to be very similar to those in other eutherians but differed from those found in marsupials, birds, reptiles, amphibians, and fish. Also, the pattern of transthyretin precursor mRNA splicing in Insectivora was more similar to that in other eutherians than to that in marsupials, reptiles, and birds. Thus, in contrast to the marsupials, with a different pattern of transthyretin gene expression in the evolutionarily "older" polyprotodonts compared with the evolutionarily "younger" diprotodonts, no separate lineages of transthyretin evolution could be identified in eutherians. We conclude that transthyretin gene expression in the liver of adult eutherians probably appeared before the branching of the lineages leading to modern eutherian species.
Resumo:
In recent years, a number of zoonotic flaviviruses have emerged worldwide, and wild birds serve as their major reservoirs. Epidemiological surveys of bird populations at various geographical scales can clarify key aspects of the eco-epidemiology of these viruses. In this study, we aimed at exploring the presence of flaviviruses in the western Mediterranean by sampling breeding populations of the yellow-legged gull (Larus michahellis), a widely distributed, anthropophilic, and abundant seabird species. For 3 years, we sampled eggs from 19 breeding colonies in Spain, France, Algeria, and Tunisia. First, ELISAs were used to determine if the eggs contained antibodies against flaviviruses. Second, neutralization assays were used to identify the specific flaviviruses present. Finally, for colonies in which ELISA-positive eggs had been found, chick serum samples and potential vectors, culicid mosquitoes and soft ticks (Ornithodoros maritimus), were collected and analyzed using serology and PCR, respectively. The prevalence of flavivirus-specific antibodies in eggs was highly spatially heterogeneous. In northeastern Spain, on the Medes Islands and in the nearby village of L'Escala, 56% of eggs had antibodies against the flavivirus envelope protein, but were negative for neutralizing antibodies against three common flaviviruses: West Nile, Usutu, and tick-borne encephalitis viruses. Furthermore, little evidence of past flavivirus exposure was obtained for the other colonies. A subset of the Ornithodoros ticks from Medes screened for flaviviral RNA tested positive for a virus whose NS5 gene was 95% similar to that of Meaban virus, a flavivirus previously isolated from ticks of Larus argentatus in western France. All ELISA-positive samples subsequently tested positive for Meaban virus neutralizing antibodies. This study shows that gulls in the western Mediterranean Basin are exposed to a tick-borne Meaban-like virus, which underscores the need of exploring the spatial and temporal distribution of this flavivirus as well as its potential pathogenicity for animals and humans.
Resumo:
Studies on host-parasite relationships have commonly reported that parasitized hosts undergo changes in their behavioural and life history traits. How do these changes affect the fitness of the hosts? What are the ecological and evolutionary drivers of these changes? These open questions are crucial to predict the parasite spread amongst hosts. Surprisingly, mosquito vectors of diseases to humans and animals have long been seen as passive parasite transporters, being unaffected by the infection though they also function as hosts. Natural parasite-vector interactions are therefore poorly documented in the literature. In this thesis, we seek to address the role of wild vectors in the epidemiology of avian Plasmodium, the etiological agents of malaria in birds. We first conducted avian malaria surveys in field-caught mosquitoes to identify the natural vectors in our temperate study area. We report that ornithophilic Culex pipiens primarily act as a vector for Plasmodium vaughani in spring, this parasite species being progressively replaced by P. relictum along with the season. Season-related factors may thus shape the mosquitoes' vectorial capacity. We then used experimental approaches to determine the effect of avian malaria on wild, naturally infected C. pipiens. We show that infected mosquitoes incur unavoidable physiological costs associated with parasite exploitation, these costs being expressed as a reduced survival under nutritionally stressed conditions only. These results are of significant importance for the epidemiology of avian malaria since seasonal changes in climate may likely influence food quality and quantity available to the mosquitoes. The host-selection preferences of the vectors with respect to the malaria-infection status of their bird hosts largely determine the disease spreading. In a second laboratory experiment, we thus offered wild C. pipiens the opportunity to choose between uninfected and naturally infected great tits, Parus major. We show that host-seeking mosquitoes have innate orientation preferences for uninfected birds. This suggests that avian malaria parasites exert strong selective pressures on their vectors, pushing them to evolve anti-parasite behaviours. We lastly investigated the links between malaria-associated symptoms in birds and resulting attractiveness to the mosquitoes. We show that experimentally malaria-infected canaries, Serinus canaria, suffer severe haematocrit reduction at peak parasitaemia and reduced basal metabolic rate later in the course of the infection. However, no links between infection and bird attractiveness to the mosquitoes were shown in an experiment using canaries as live bait for mosquito trap in the field. These links may have been masked by confounding environmental factors. Using a system where the vectors, parasites and hosts co-occur in sympatry, this thesis illustrates that vectors are not always Plasmodium permissive, which opposes to the traditional view that malaria parasites should have little effect on their vectors. The way that the vectors respond to the parasite threat is largely determined by the environmental conditions. This may have major implications for the epidemiology of avian malaria. - Les études portant sur les relations hôtes-parasites mentionnent souvent que les hôtes parasités subissent des modifications de leurs traits d'histoire de vie ou bien comportementaux. Comment ces changements affectent-ils la valeur sélective des hôtes et celle de leurs parasites ? Quels sont les déterminants de ces modifications ? Ces questions sont d'un grand intérêt en épidémiologie. Pour autant, les moustiques vecteurs de maladies infectieuses ont longtemps été perçus comme de simples transporteurs de parasites, n'étant pas affectés par ces derniers. Cette thèse porte sur le rôle des vecteurs dans l'épidémiologie des Plasmodium aviaires, agents étiologiques de la malaria chez les oiseaux. Dans le but d'identifier les vecteurs naturels de malaria aviaire dans notre zone d'étude, nous avons tout d'abord collecté des moustiques sur le terrain, puis déterminé leur statut infectieux. Nous rapportons que les moustiques Culex pipiens sont principalement impliqués dans la transmission de Plasmodium vaughani au printemps, cette espèce de parasite étant progressivement remplacée par P. relictum au fil de la saison de transmission. Nous avons ensuite conduit une expérience visant à déterminer l'effet de la malaria aviaire sur des C. pipiens sauvages, naturellement infectés. Nous montrons que des coûts sont associés à l'infection pour les moustiques. Ces coûts occasionnent une diminution de la survie des vecteurs seulement lorsque ceux-ci sont privés de ressources nutritionnelles. Des changements saisonniers de climats pourraient affecter la quantité et la qualité des ressources disponibles pour les vecteurs et donc, leur aptitude à transmettre l'infection. Les traits comportementaux des moustiques vecteurs, tels que la recherche et le choix d'un hôte pour se nourrir, sont d'une importance majeure pour la dispersion de la malaria. Pour cela, nous avons offert à des C. pipiens sauvages l'opportunité de choisir simultanément entre une mésange charbonnière (Parus major) saine et une autre naturellement infectée. Nous montrons que les moustiques s'orientent préférentiellement vers des mésanges saines. Les Plasmodium aviaires exerceraient donc de fortes pressions de sélection sur leurs vecteurs, favorisant ainsi l'évolution de comportements d'évitement des parasites. Enfin nous avons cherché à identifier de potentiels liens entre symptômes de l'infection malarique chez les oiseaux et attractivité de ces derniers pour les moustiques. Nous montrons que des canaris (Serinus canaria) expérimentalement infectés sont fortement anémiés au moment du pic infectieux et que leur métabolisme basai diminue plus tard au cours de l'infection. Toutefois, aucun lien entre le statut infectieux et l'attractivité des canaris pour les moustiques n'a pu être montré lors d'une expérience réalisée en nature. Il se peut que ces liens aient été masqués par des facteurs environnementaux confondants. Dans son ensemble, cette thèse illustre que, contrairement aux idées reçues, les vecteurs de malaria aviaire ne sont pas toujours permissifs avec leurs parasites. L'environnement apparaît aussi comme un facteur déterminant dans la réponse des vecteurs face à la menace d'infection malarique. Cela pourrait fortement affecter l'épidémiologie de la malaria aviaire.
Resumo:
High mountain rangelands host important populations of threatened bird species, but can be affected by extensive changes in land use. I studied the breeding bird community of two shrubland plots at 1,850–2,100 m a.s.l. in the Pyrenees. Breeding territories were mapped for four years, before and after the prescribed burning, the aim of which was to increase the grazing value of the study area. The most abundant species (reaching ≥3 breeding pairs/10 ha in at least one plot and one year) were Dunnock Prunella modularis, Dartford Warbler Sylvia undata, Stonechat Saxicola torquatus, Rock Bunting Emberiza cia and Ortolan Bunting E. hortulana. The open-shrubland plot contained a similar number of breeding species (10 vs.9), but a lower overall density (23 vs. 28 breeding pairs/10 ha) than the dense-shrubland plot. Most breeding species alsooccurred in winter. After fire, the number of bird species, overall density and conservation value (an index that takes into account all species’ densities and their categories of conservation concern in Europe) decreased, but tended to recover afterwards. These results may help understand the composition and dynamics of bird assemblages in managed mountain areas
Resumo:
Trophic ecology and movements are critical issues for understanding the role of marine predators in food webs and for facing the challenges of their conservation. Seabird foraging ecology has been increasingly studied, but small elusive species, such as those forming the"little shearwater" complex, remain poorly known. We present the first study on the movements and feeding ecology of the Barolo shearwater Puffinus baroli baroli in a colony from the Azores archipelago (NE Atlantic), combining global location-sensing units, stable isotope analyses of feathers (δ13C and δ15N), stomach flushings and data from maximum depth gauges. During the chick-rearing period, parents visited their nests most nights, foraged mainly south of the colony and fed at lower trophic levels than during the non-breeding period. Squid was the most diverse prey (6 families and at least 10 different taxa), but species composition varied considerably between years. Two squid families, Onychoteuthidae and Argonautidae, and the fish family Phycidae accounted for 82.3% of ingested prey by number. On average, maximum dive depths per foraging trip reached 14.8 m (range: 7.9 to 23.1 m). After the breeding period, birds dispersed offshore in all directions and up to 2500 km from the breeding colony, and fed at higher trophic levels. Overall, our results indicate that the Barolo shearwater is a non-migratory shearwater feeding at the lowest trophic level among Macaronesian seabirds, showing both diurnal and nocturnal activity and feeding deeper in the water column, principally on small schooling squid and fish. These traits contrast with those of 3 other Azorean Procellariiformes (Cory"s shearwater Calonectris diomedea, the Madeiran storm-petrel Oceanodroma castro and Monteiro"s storm-petrel O. monteiroi), indicating ecological segregation within the Azorean seabird community.
Resumo:
Seabirds act as natural reservoirs to Lyme borreliosis spirochetes and may play a significant role in the global circulation of these pathogens. While Borrelia burgdorferi sensu lato (Bbsl) has been shown to occur in ticks collected from certain locations in the North Pacific, little is known about interspecific differences in exposure within the seabird communities of this region. We examined the prevalence of anti-Bbsl antibodies in 805 individuals of nine seabird species breeding across the North Pacific. Seroprevalence varied strongly among species and locations. Murres (Uria spp.) showed the highest antibody prevalence and may play a major role in facilitating Bbsl circulation at a worldwide scale. Other species showed little or no signs of exposure, despite being present in multispecific colonies with seropositive birds. Complex dynamics may be operating in this wide scale, natural hostparasite system, possibly mediated by the host immune system and host specialization of the tick vector.
Resumo:
Feeding ecology and geographic location are 2 major factors influencing animal stable isotope signatures, but their relative contributions are poorly understood, which limits the usefulness of stable isotope analysis in the study of animal ecology. To improve our knowledge of the main sources of isotopic variability at sea, we determined δ15N and δ13C signatures in the first primary feather of adult birds from 11 Procellariiform species (n = 609) across 16 northeast Atlantic localities, from Cape Verde (20°N) to Iceland (60°N). Post-breeding areas (where the studied feather is thought to be grown) were determined using light-level geolocation for 6 of the 11 species. Isotopic variability was geographically unstructured within the mid-northeast Atlantic (Macaronesian archipelagos), but trophically structured according to species and regardless of the breeding location, presumably as a result of trophic segregation among species. Indeed, the interspecific isotopic overlap resulting from combining δ15N and δ13C signatures of seabirds was low, which suggests that most species exploited exclusive trophic resources consistently across their geographic range. Species breeding in north temperate regions (Iceland, Scotland and Northern Ireland) showed enriched δ15N compared to the same or similar species breeding in tropical and subtropical regions, suggesting some differences in baseline levels between these regions. The present study illustrates a noticeable trophic segregation of northeast Atlantic Procellariiformes. Our results show that the isotopic approach has limited applicability for the study of animal movements in the northeast Atlantic at a regional scale, but is potentially useful for the study of long-distance migrations between large marine systems