938 resultados para Biological samples
Resumo:
Au nanoparticles (AuNPs) have been widely used not only as optical labels or ‘weight” labels for the detections of biorecognition events but also an amplifier of surface plasmon resonance biosensors. The intrinsic property of gold nuclei composing of a group of Au atoms to catalyze the reduction of metal ions on the NPs and thereby to enlarge the metallic nanoparticles is employed in different biosensing paths. In a solution containing Au+ ions (e.g. HAuCl4) and the Au clusters, hydrated electrons which are reduced from oxidation of reducers (H2O2, sodium citrate, ascorbic acid, or NaBH4) will be used to reduce the Au+ ion leading to the deposition of Au+ to the Au0 (Au clusters). The reaction will be catalyzed continuously by the Au0 until the Au+ ions and hydrated electrons are exhausted. As a result, the AuNPs will be grown and their optical properties are also changed. If the AuNP nanoclusters are used as probes, the color change will be dependent on amount of analytes, thus give a quantitative monitoring of the analytes.
In this study, we incorporate the use of magnetic beads with the nanocrystalline growth to quantify a target protein based on immunoreactions. Prostate specific antigen (PSA) is chosen as the target analyte because of its values in diagnosis of prostate cancer. A double-sandwiched immunoassay is performed by gold-tagged monoclonal PSA antibody-PSA antigen – magnetic bead-tagged polyclonal PSA antibody interactions. After the immunoreactions, the target analytes are preconcentrated and separated by the magnetic beads while the nanogrowth plays a role of colorimetric signal developer.
The result shows that this is a very sensitive, robust and excellent strategy to detect biological interactions. PSA antigen is detected at femtomolar level with very high specificity under the presence of undesired proteins of crude samples. Furthermore, the method also shows great potential to detect other biological interactions. More details will be described in our presentation.
Resumo:
The question of whether there is or was life on Mars has been one of the most pivotal since Schiaparellis' telescopic observations of the red planet. With the advent of the space age, this question can be addressed directly by exploring the surface of Mars and by bringing samples to Earth for analysis. The latter, however, is not free of problems. Life can be found virtually everywhere on Earth. Hence the potential for contaminating the Mars samples and compromising their scientific integrity is not negligible. Conversely, if life is present in samples from Mars, this may represent a potential source of extraterrestrial biological contamination for Earth. A range of measures and policies, collectively termed ‘planetary protection’, are employed to minimise risks and thereby prevent undesirable consequences for the terrestrial biosphere. This report documents discussions and conclusions from a workshop held in 2012, which followed a public conference focused on current capabilities for performing life-detection studies on Mars samples. The workshop focused on the evaluation of Mars samples that would maximise scientific productivity and inform decision making in the context of planetary protection. Workshop participants developed a strong consensus that the same measurements could be employed to effectively inform both science and planetary protection, when applied in the context of two competing hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. Participants then outlined a sequence for sample processing and defined analytical methods that would test these hypotheses. They also identified critical developments to enable the analysis of samples from Mars.
Resumo:
Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.
Resumo:
Dissertação mest., Engenharia Biológica, Universidade do Algarve, 2009
Resumo:
Tese de doutoramento, Biologia (Biologia Molecular), Universidade de Lisboa, Faculdade de Ciências, 2015
Resumo:
Bioterrorism literally means using microorganisms or infected samples to cause terror and panic in populations. Bioterrorism had already started 14 centuries before Christ, when the Hittites sent infected rams to their enemies. However, apart from some rare well-documented events, it is often very difficult for historians and microbiologists to differentiate natural epidemics from alleged biological attacks, because: (i) little information is available for times before the advent of modern microbiology; (ii) truth may be manipulated for political reasons, especially for a hot topic such as a biological attack; and (iii) the passage of time may also have distorted the reality of the past. Nevertheless, we have tried to provide to clinical microbiologists an overview of some likely biological warfare that occurred before the 18th century and that included the intentional spread of epidemic diseases such as tularaemia, plague, malaria, smallpox, yellow fever, and leprosy. We also summarize the main events that occurred during the modern microbiology era, from World War I to the recent 'anthrax letters' that followed the World Trade Center attack of September 2001. Again, the political polemic surrounding the use of infectious agents as a weapon may distort the truth. This is nicely exemplified by the Sverdlovsk accident, which was initially attributed by the authorities to a natural foodborne outbreak, and was officially recognized as having a military cause only 13 years later.
Resumo:
Some recent studies have characterized the stability of blood variables commonly measured for the Athlete Biological Passport. The aim of this study was to characterize the impact of different shipments conditions and the quality of the results returned by the haematological analyzer. Twenty-two healthy male subjects provided five EDTA tubes each. Four shipment conditions (24, 36, 48, 72 h) under refrigerated conditions were tested and compared to a set of samples left in the laboratory also under refrigerated conditions (group control). All measurements were conducted using two Sysmex XT-2000i analyzers. Haemoglobin concentration, reticulocytes percentage, and OFF-score numerical data were the same for samples analyzed just after collection and after a shipment under refrigerated conditions up to 72 h. Detailed information reported especially by the differential (DIFF) channel scatterplot of the Sysmex XT-2000i indicated that there were signs of blood deterioration, but were not of relevance for the variables used in the Athlete Biological Passport. As long as the cold chain is guaranteed, the time delay between the collection and the analyses of blood variables can be extended. Copyright© 2015 John Wiley & Sons, Ltd.
Resumo:
Forty-four bacteriophage isolates of Erwinia amy/ovora, the causal agent of fire blight, were collected from sites in and around the Niagara Region of Southern Ontario in the summer of 1998. Phages were isolated only from sites where fire blight was present. Thirty-seven of these phages were isolated from the soil surrounding infected trees, with the remainder isolated from aerial plant tissue samples. A mixture of six E. amy/ovora bacterial host strains was used to enrich field samples in order to avoid the selection bias of a single-host system. Molecular characterization of the phages with a combination of peR and restriction endonuclease digestions showed that six distinct phage types were isolated. Ten phage isolates related to the previously characterized E. amy/ovora phage PEa1 were isolated, with some divergence of molecular markers between phages isolated from different sites. The host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amy/ovora strains, and that some types were able to lyse the epiphytic bacterium Pantoea agg/omerans. Biological control of E. amy/ovora by the bacteriophages was assessed in a bioassay using discs of immature pear fruit. Twenty-three phage isolates were able to significantly suppress the incidence of bacterial exudate on the pear disc surface. Quantification of the bacterial population remaining on the disc surface indicated that population reductions of up to 97% were obtainable by phage treatment, but that elimination of bacteria from the surface was not possible with this model system.
Resumo:
Ireland’s waters constitute one of the richest habitats for cetaceans in Europe. Marine mammals, particularly cetaceans, are known to be definitive hosts of digestive parasites from the Fm.Anisakidae. The main aim of this study is to collect and compile all the information available out there regarding parasites of the Fm. Anisakidae and their definitive hosts. Secondary objectives are to relate the presence of cetacean species with the presence of parasites of the Fm. Anisakidae and to determine whether this greater number of cetaceans relates to a greater level of parasitism. Prevalence and burdens of anisakids in definitive hosts vary widely with host species, geographic location, and season. Results from several post-mortem exams are given. However, they cannot be compared due to differences in collecting techniques. Anisakis simplex is the most commonly and widespread parasite found in the majority of the samples and in a major number of hosts, which include harbour porpoise, short-beaked common dolphin and bottlenose dolphin. Studies on harbour porpoise obtained prevalences of Anisakis spp. of 46% (n=26) and of 100% (n= 12). Another study in common dolphin reported a prevalence of 68% (n=25). Several reasons could influence the variations in the presence of Anisakis. Studies on commercially exploited fish have reported prevalences of Anisakis simplex ranging from 65-100% in wild Atlantic salmon and from 42-53.4% in Atlantic cod
Resumo:
As zinc (Zn) is both an essential trace element and potential toxicant, the effects of Zn fixation in soil are of practical significance. Soil samples from four field sites amended with ZnSO4 were used to investigate ageing of soluble Zn under field conditions over a 2-year period. Lability of Zn measured using 65Zn radioisotope dilution showed a significant decrease over time and hence evidence of Zn fixation in three of the four soils. However, 0.01 M CaCl2 extractions and toxicity measurements using a genetically modified lux-marked bacterial biosensor did not indicate a decrease in soluble/bioavailable Zn over time. This was attributed to the strong regulatory effect of abiotic properties such as pH on these latter measurements. These results also showed that Zn ageing occurred immediately after Zn spiking, emphasising the need to incubate freshly spiked soils before ecotoxicity assessments. Ageing effects were detected in Zn-amended field soils using 65Zn isotopic dilution as a measure of lability, but not with either CaCl2 extractions or a lux-marked bacterial biosensor.
Resumo:
The microbial fermentability, ruminal degradability and digestibility of 48 maize silages were determined using in vitro gas production (GP), in situ degradability and in vitro digestibility procedures. The silages were produced from forage maize harvested throughout the summer of 1998, and represent a wide range of physiological maturities. Large variations among samples were observed for all biological parameters, with the exception of in vitro digestibility and the asymptote of in vitro GP. The potential of near infrared reflectance spectroscopy (NIRS) to predict the biological parameters measured was determined by regression of the biological data against the respective spectral profile. NIRS demonstrated only a moderate ability (R-2 > 0.60-0.80) to predict in vitro digestibility, modelled kinetics of gas production (excluding the asymptote of gas production) and the modelled ruminally soluble dry matter (DM) fraction. Calibration statistics for remaining biological parameters were unacceptably poor (R-2 = 0.60). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The present work demonstrates the successful application of automated biocompatible in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC) for determination of interferon alpha(2a) (IFN alpha(2a)) in plasma samples for therapeutic drug monitoring. A restricted access material (RAM, protein-coated silica) was employed for preparation of a lab-made biocompatible in-tube SPME capillary that enables the direct injection of biological fluids as well as the simultaneous exclusion of macromolecules by chemical diffusion barrier and drug pre-concentration. The in-tube SPME variables, such as sample volume, draw/eject volume, number of draw-eject cycles, and desorption mode were optimized, to improve the sensitivity of the proposed method. The IFN alpha(2a) analyses in plasma sample were carried out within 25 min (sample preparation and LC analyses). The response of the proposed method was linear over a dynamic range, from 0.06 to 3.0 MIU mL(-1), with correlation coefficient equal to 0.998. The interday precision of the method presented coefficient of variation lower than 8%. The proposed automated method has adequate analytical sensitivity and selectivity for determination of IFN alpha(2a) in plasma samples for therapeutic drug monitoring. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A new polymeric coating consisting of a dual-phase, polydimethylsiloxane (PDMS) and polypyrrole (PPY) was developed for the stir bar sorptive extraction (SBSE) of antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine and sertraline) from plasma samples, followed by liquid chromatography analysis (SBSE/LC-UV). The extractions were based on both adsorption (PPY) and sorption (PDMS) mechanisms. SBSE variables, such as extraction time, temperature, pH of the matrix, and desorption time were optimized, in order to achieve suitable analytical sensitivity in a short time period. The PDMS/PPY coated stir bar showed high extraction efficiency (sensitivity and selectivity) toward the target analytes. The quantification limits (LOQ) of the SBSE/LC-UV method ranged from 20 ng mL(-1) to 50 ng mL(-1), and the linear range was from LOQ to 500 ng mL(-1), with a determination coefficient higher than 0.99. The inter-day precision of the SBSE/LC-UV method presented a variation coefficient lower than 15%. The efficiency of the SBSE/LC-UV method was proved by analysis of plasma samples from elderly depressed patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A novel analytical approach, based on a miniaturized extraction technique, the microextraction by packed sorbent (MEPS), followed by ultrahigh pressure liquid chromatography (UHPLC) separation combined with a photodiode array (PDA) detection, has been developed and validated for the quantitative determination of sixteen biologically active phenolic constituents of wine. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (linearity, sensitivity, selectivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters on the MEPS performance such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). The wine bioactive phenolics were eluted by 250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method gave satisfactory results in terms of linearity with r2-values > 0.9986 within the established concentration range. The LOD varied from 85 ng mL−1 (ferulic acid) to 0.32 μg mL−1 ((+)-catechin), whereas the LOQ values from 0.028 μg mL−1 (ferulic acid) to 1.08 μg mL−1 ((+)-catechin). Typical recoveries ranged between 81.1 and 99.6% for red wines and between 77.1 and 99.3% for white wines, with relative standard deviations (RSD) no larger than 10%. The extraction yields of the MEPSC8/UHPLC–PDA methodology were found between 78.1 (syringic acid) and 99.6% (o-coumaric acid) for red wines and between 76.2 and 99.1% for white wines. The inter-day precision, expressed as the relative standard deviation (RSD%), varied between 0.2% (p-coumaric and o-coumaric acids) and 7.5% (gentisic acid) while the intra-day precision between 0.2% (o-coumaric and cinnamic acids) and 4.7% (gallic acid and (−)-epicatechin). On the basis of analytical validation, it is shown that the MEPSC8/UHPLC–PDA methodology proves to be an improved, reliable, and ultra-fast approach for wine bioactive phenolics analysis, because of its capability for determining simultaneously in a single chromatographic run several bioactive metabolites with high sensitivity, selectivity and resolving power within only 10 min. Preliminary studies have been carried out on 34 real whole wine samples, in order to assess the performance of the described procedure. The new approach offers decreased sample preparation and analysis time, and moreover is cheaper, more environmentally friendly and easier to perform as compared to traditional methodologies.