965 resultados para Beiwu intrusion, Hajiang suture zone, southwest China


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the Soviet Army topographic sheet map of the Shaoxing region, Zhejiang Sheng, China (map quadrangle number: H-51-XIX). It is from a series of Soviet Army topographic maps of China 1:200,000. Published in 1979, the source map was compiled from maps 1:100,000 published in 1977; corrected according to source material, 1973, 1974. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pulkovo 1942 GK Zone 20N projection. Map collar information from the source map have been cropped and are not available as part of the raster image. China 1:200,000 topographic maps were prepared and printed by the Soviet Army General Headquarters, 1976-1991. China 1:200,000 maps are in Russian. Each source map in the series is printed in color. China 1:200,000 maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works and structures of humans, such as roads, railroads, paths, walls, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 40 meters and/or spot heights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the Soviet Army topographic sheet map of the Xianju region, Zhejiang Sheng, China (map quadrangle number: H-51-XXV). It is from a series of Soviet Army topographic maps of China 1:200,000. Published in 1986, this map reflects 1979 ground conditions. The source map was compiled from maps 1:100,000 published in 1979. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pulkovo 1942 GK Zone 20N projection. Map collar information from the source map have been cropped and are not available as part of the raster image. China 1:200,000 topographic maps were prepared and printed by the Soviet Army General Headquarters, 1976-1991. China 1:200,000 maps are in Russian. Each source map in the series is printed in color. China 1:200,000 maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works and structures of humans, such as roads, railroads, paths, walls, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 40 meters and/or spot heights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the Soviet Army topographic sheet map of the Wenzhou region, Zhejiang Sheng, China (map quadrangle number: H-51-XXXI). It is from a series of Soviet Army topographic maps of China 1:200,000. Published in 1986, this map reflects 1979 ground conditions. The source map was compiled from maps 1:100,000 published in 1979. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pulkovo 1942 GK Zone 20N projection. Map collar information from the source map have been cropped and are not available as part of the raster image. China 1:200,000 topographic maps were prepared and printed by the Soviet Army General Headquarters, 1976-1991. China 1:200,000 maps are in Russian. Each source map in the series is printed in color. China 1:200,000 maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works and structures of humans, such as roads, railroads, paths, walls, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 40 meters and/or spot heights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Plan de La ville de Peking capitale de l'empire de la Chine, située par les 39.d 54 m. Lat. Septr.le = Grondetekening der Stad Peking Hoofdstad van China, op 39 Graaden en 54 Minuuten Noorderbreedte, J. v. Schley, direx. It was published in 1749. Scale [ca. 1:90,000]. Covers Beijing, China. Map in French and Dutch.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM Zone 50N, meters, WGS 1984) projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map.This map shows features such as drainage, fortification, city entrances, selected buildings pictorially, ground cover, cemeteries, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Pékin. It was published by A. Nachbaur in 1900. Scale 1:25,000. Covers Beijing, China. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM Zone 50N, meters, WGS 1984) projected. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map.This map shows features such as roads, railroads and stations, drainage, selected buildings, temples, pagodas, mosques, missions, French official buildings, state buildings, tourist locations, ground cover, parks, and more.This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the Soviet Army topographic sheet map of the Lishui region, Zhejiang Sheng, China (map quadrangle number: H-50-XXXVI). It is from a series of Soviet Army topographic maps of China 1:200,000. Published in 1979, the source map was compiled from maps 1:100,000 published in 1977; corrected according to source material, 1973-1975. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pulkovo 1942 GK Zone 20N projection. Map collar information from the source map have been cropped and are not available as part of the raster image. China 1:200,000 topographic maps were prepared and printed by the Soviet Army General Headquarters, 1976-1991. China 1:200,000 maps are in Russian. Each source map in the series is printed in color. China 1:200,000 maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works and structures of humans, such as roads, railroads, paths, walls, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 40 meters and/or spot heights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over 30 first and last occurrence (FO and LO, respectively) planktonic foraminifer datums were recognized from the Oligocene-Miocene section of Ocean Drilling Program (ODP) Site 1148. Most datum levels occur in similar order as, and are by correlation as probably synchronous with, their open-ocean records. Several datum levels represent local bioevents resulting from dissolution and Site 1148's unique paleoceanographic setting in the northern South China Sea. An age of 9.5-9.8 Ma is estimated for the local LO of Globoquadrina dehiscens (257 meters composite depth [mcd]), whereas the local LO of Globorotalia fohsi s.l. (301 mcd) is projected to be at ~13.0 Ma and the local FO of Globigerinatella insueta (367 mcd) is projected to be at ~18.0 Ma. The combined planktonic foraminifer and nannofossil results indicate that the Oligocene-Miocene section at Site 1148 is not complete. Unconformities up to 2-3 m.y. in duration, occurring at and before the Oligocene/Miocene boundary (OHS1, OHS2, OHS3, and OHS4 = MHS1), are associated with slump deposits between 457 and 495 mcd that signal tectonic instability during the transition from rifting to spreading in the South China Sea. Shorter unconformities of <0.5 m.y. duration that truncate the Miocene section were more likely to have been caused by sea-bottom erosion as well as dissolution. A total of 12 Miocene unconformities, MHS1 through MHS12, are mainly affected by dissolution and an elevated carbonate compensation depth (CCD) during Miocene third-order glaciations recorded in deep-sea positive oxygen isotope Mi glaciation events. Respectively, they fall at ~457 mcd (MHS1 = Mi-1), 407 mcd (MHS2 = Mi-1a), 385 mcd (MHS3 = Mi-1aa), 366 mcd (MHS4 = Mi-1b), 358 mcd (MHS5 = MLi-1), 333 mcd (MHS6 = Mi-2), 318 mcd (MHS7 = MSi-1), 308 mcd (MHS8 = Mi-3), 295 mcd (MHS9 = Mi-4), 288 mcd (MHS10 = Mi-5), 256 mcd (MHS11 = Mi-6), and 250 mcd (MHS12 = Mi-7). The correlation of these unconformities with Mi events indicates that some related driving mechanisms have been operating, causing deepwater circulation changes concomitantly in world oceans and in the marginal South China Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dinoflagellate stratigraphy is described for the section from 364.75 to 843.85 meters below seafloor (mbsf) at Site 1148 (Sections 184-1148A-40X-1 through 76X-6 and 184-1148B-39X-CC through 56X-1) in the South China Sea. Two assemblage zones and two subzones are defined, based on characteristics of the assemblages and lowest/highest occurrences of some key species. These are the Cleistosphaeridium diversispinosum Assemblage Zone (Zone A; Oligocene), with the Enneadocysta pectiniformis Subzone (Subzone A-1) and the Cordosphaeridium gracile Subzone (Subzone A-2), and the Polysphaeridium zoharyi Assemblage Zone (Zone B; early Miocene). The highest concurrent occurrence of Enneadocysta arcuata, Eneadocysta multicornuta, Homotryblium plectilum, and Homotryblium tenuispinosum delineates the upper boundary of Zone A, which appears to mark a hiatus. Subzone A-1 is of early Oligocene age, as evidenced by the highest occurrences of E. pectiniformis and Phthanoperidinium amoenum at the upper boundary of the subzone. Subzone A-2 is of late Oligocene age based on the highest occurrences of C. gracile and Wetzeliella gochtii close to the upper boundary of the subzone and the occurrence of Distatodinium ellipticum and Membranophoridium aspinatum within the subzone. Zone B is dated as early Miocene based on the lowest occurrences of Cerebrocysta satchelliae, Hystrichosphaeropsis obscura, Melitasphaeridium choanophorum, Membranilarnacia? picena, and Tuberculodinium vancampoae within the zone. The present assemblage zones/subzones are correlative to various degrees with coeval zones/assemblages from areas of high to low latitudes in terms of common key species. We have compared the species content of the assemblage Zones A and B, and the subzones A-1 and A-2, with coeval assemblage(s)/zone(s) described from many, often widely distant, high- and low-latitude regions of the world. These comparisons show that, to various degrees and aside from a number of key species, the coordinated presence of certain important species may also help to assign an age to a given assemblage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conducted in cooperation with California Dept. of Water Resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contributing to the evaluation of seismic hazards, a previously unmapped strand of the Seattle Fault Zone (SFZ), cutting across the southwest side of Lake Washington and southeast Seattle, is located and characterized on the basis of bathymetry, borehole logs, and ground penetrating radar (GPR). Previous geologic mapping and geophysical analysis of the Seattle area have generally mapped the locations of some strands of the SFZ, though a complete and accurate understanding of locations of all individual strands of the fault system is still incomplete. A bathymetric scarp-like feature and co-linear aeromagnetic anomaly lineament defined the extent of the study area. A 2-dimensional lithology cross-section was constructed using six boreholes, chosen from suitable boreholes in the study area. In addition, two GPR transects, oblique to the proposed fault trend, served to identify physical differences in subsurface materials. The proposed fault trace follows the previously mapped contact between the Oligocene Blakeley Formation and Quaternary deposits, and topographic changes in slope. GPR profiles in Seward Park and across the proposed fault location show the contact between the Blakeley Formation and unconsolidated glacial deposits, but it does not constrain an offset. However, north-dipping beds in the Blakely Formation are consistent with previous interpretations of P-wave seismic profiles on Mercer Island and Bellevue, Washington. The profiles show the mapped location of the aeromagnetic lineament in Lake Washington and the inferred location of the steeply-dipping, high-amplitude bedrock reflector, representing a fault strand. This north-dipping reflector is likely the same feature identified in my analysis. I characterize the strand as a splay fault, antithetic to the frontal fault of the SFZ. This new fault may pose a geologic hazard to the region.