964 resultados para Bayesian Population Modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is one of the most crucial ecological problems of our age with great influence. Seasonal dynamics of aquatic communities are — among others — regulated by the climate, especially by temperature. In this case study we attempted the simulation modelling of the seasonal dynamics of a copepod species, Cyclops vicinus, which ranks among the zooplankton community, based on a quantitative database containing ten years of data from the Danube’s Göd area. We set up a simulation model predicting the abundance of Cyclops vicinus by considering only temperature as it affects the abundance of population. The model was adapted to eight years of daily temperature data observed between 1981 and 1994 and was tested successfully with the additional data of two further years. The model was run with the data series of climate change scenarios specified for the period around 2070- 2100. On the other hand we looked for the geographically analogous areas with the Göd region which are mostly similar to the future climate of the Göd area. By means of the above-mentioned points we can get a view how the climate of the region will change by the end of the 21st century, and the way the seasonal dynamics of a chosen planktonic crustacean species may follow this change. According to our results the area of Göd will be similar to the northern region of Greece. The maximum abundance of the examined species occurs a month to one and a half months earlier, moreover larger variances are expected between years in respect of the abundance. The deviations are expected in the direction of smaller or significantly larger abundance not observed earlier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change highly impacts on tree growth and also threatens the forest of the karstic terrains. From the 1980s the frequency of decay events of the Pinus nigra Arnold forests showed a marked increase in Hungary. To understanding the vulnerability of Pinus nigra forests to climate change on shallow karstic soils in continental-sub Mediterranean climatic conditions we developed the study of three sampled population in the typical karstic landscape of Veszprém in North Transdanubia. We built our model on non-invasive approach using the annual growth of the individuals. MPI Echam5 climate model and as aridity index the Thornthwaite Agrometeorological Index were used. Our results indicate that soil thickness up to 11 cm has a major influence on the main growth intensity, however, aridity determines the annual growth rate. Our model results showed that the increasing decay frequency in the last decades was a parallel change to the decreasing growth rate of pines. The climate model predicts the similar, increased decay frequency to the presents. Our results can be valid for a wider areas of the periphery of Mediterranean climate zone while the annual-growth based model is a cost-effective and simple method to study the vitality of pine trees in a given area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background There is substantial evidence from high income countries that neighbourhoods have an influence on health independent of individual characteristics. However, neighbourhood characteristics are rarely taken into account in the analysis of urban health studies from developing countries. Informal urban neighbourhoods are home to about half of the population in Aleppo, the second largest city in Syria (population>2.5 million). This study aimed to examine the influence of neighbourhood socioeconomic status (SES) and formality status on self-rated health (SRH) of adult men and women residing in formal and informal urban neighbourhoods in Aleppo. Methods The study used data from 2038 survey respondents to the Aleppo Household Survey, 2004 (age 18–65 years, 54.8% women, response rate 86%). Respondents were nested in 45 neighbourhoods. Five individual-level SES measures, namely education, employment, car ownership, item ownership and household density, were aggregated to the level of neighbourhood. Multilevel regression models were used to investigate associations. Results We did not find evidence of important SRH variation between neighbourhoods. Neighbourhood average of household item ownership was associated with a greater likelihood of reporting excellent SRH in women; odds ratio (OR) for an increase of one item on average was 2.3 (95% CI 1.3-4.4 (versus poor SRH)) and 1.7 (95% CI 1.1-2.5 (versus normal SRH)), adjusted for individual characteristics and neighbourhood formality. After controlling for individual and neighbourhood SES measures, women living in informal neighbourhoods were less likely to report poor SRH than women living in formal neighbourhoods (OR= 0.4; 95% CI (0.2- 0.8) (versus poor SRH) and OR=0.5; 95%; CI (0.3-0.9) (versus normal SRH). Conclusions Findings support evidence from high income countries that certain characteristic of neighbourhoods affect men and women in different ways. Further research from similar urban settings in developing countries is needed to understand the mechanisms by which informal neighbourhoods influence women’s health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.

Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.

One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.

Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.

In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.

Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.

The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.

Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surveys can collect important data that inform policy decisions and drive social science research. Large government surveys collect information from the U.S. population on a wide range of topics, including demographics, education, employment, and lifestyle. Analysis of survey data presents unique challenges. In particular, one needs to account for missing data, for complex sampling designs, and for measurement error. Conceptually, a survey organization could spend lots of resources getting high-quality responses from a simple random sample, resulting in survey data that are easy to analyze. However, this scenario often is not realistic. To address these practical issues, survey organizations can leverage the information available from other sources of data. For example, in longitudinal studies that suffer from attrition, they can use the information from refreshment samples to correct for potential attrition bias. They can use information from known marginal distributions or survey design to improve inferences. They can use information from gold standard sources to correct for measurement error.

This thesis presents novel approaches to combining information from multiple sources that address the three problems described above.

The first method addresses nonignorable unit nonresponse and attrition in a panel survey with a refreshment sample. Panel surveys typically suffer from attrition, which can lead to biased inference when basing analysis only on cases that complete all waves of the panel. Unfortunately, the panel data alone cannot inform the extent of the bias due to attrition, so analysts must make strong and untestable assumptions about the missing data mechanism. Many panel studies also include refreshment samples, which are data collected from a random sample of new

individuals during some later wave of the panel. Refreshment samples offer information that can be utilized to correct for biases induced by nonignorable attrition while reducing reliance on strong assumptions about the attrition process. To date, these bias correction methods have not dealt with two key practical issues in panel studies: unit nonresponse in the initial wave of the panel and in the

refreshment sample itself. As we illustrate, nonignorable unit nonresponse

can significantly compromise the analyst's ability to use the refreshment samples for attrition bias correction. Thus, it is crucial for analysts to assess how sensitive their inferences---corrected for panel attrition---are to different assumptions about the nature of the unit nonresponse. We present an approach that facilitates such sensitivity analyses, both for suspected nonignorable unit nonresponse

in the initial wave and in the refreshment sample. We illustrate the approach using simulation studies and an analysis of data from the 2007-2008 Associated Press/Yahoo News election panel study.

The second method incorporates informative prior beliefs about

marginal probabilities into Bayesian latent class models for categorical data.

The basic idea is to append synthetic observations to the original data such that

(i) the empirical distributions of the desired margins match those of the prior beliefs, and (ii) the values of the remaining variables are left missing. The degree of prior uncertainty is controlled by the number of augmented records. Posterior inferences can be obtained via typical MCMC algorithms for latent class models, tailored to deal efficiently with the missing values in the concatenated data.

We illustrate the approach using a variety of simulations based on data from the American Community Survey, including an example of how augmented records can be used to fit latent class models to data from stratified samples.

The third method leverages the information from a gold standard survey to model reporting error. Survey data are subject to reporting error when respondents misunderstand the question or accidentally select the wrong response. Sometimes survey respondents knowingly select the wrong response, for example, by reporting a higher level of education than they actually have attained. We present an approach that allows an analyst to model reporting error by incorporating information from a gold standard survey. The analyst can specify various reporting error models and assess how sensitive their conclusions are to different assumptions about the reporting error process. We illustrate the approach using simulations based on data from the 1993 National Survey of College Graduates. We use the method to impute error-corrected educational attainments in the 2010 American Community Survey using the 2010 National Survey of College Graduates as the gold standard survey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La diminution des doses administrées ou même la cessation complète d'un traitement chimiothérapeutique est souvent la conséquence de la réduction du nombre de neutrophiles, qui sont les globules blancs les plus fréquents dans le sang. Cette réduction dans le nombre absolu des neutrophiles, aussi connue sous le nom de myélosuppression, est précipitée par les effets létaux non spécifiques des médicaments anti-cancéreux, qui, parallèlement à leur effet thérapeutique, produisent aussi des effets toxiques sur les cellules saines. Dans le but d'atténuer cet impact myélosuppresseur, on administre aux patients un facteur de stimulation des colonies de granulocytes recombinant humain (rhG-CSF), une forme exogène du G-CSF, l'hormone responsable de la stimulation de la production des neutrophiles et de leurs libération dans la circulation sanguine. Bien que les bienfaits d'un traitement prophylactique avec le G-CSF pendant la chimiothérapie soient bien établis, les protocoles d'administration demeurent mal définis et sont fréquemment déterminés ad libitum par les cliniciens. Avec l'optique d'améliorer le dosage thérapeutique et rationaliser l'utilisation du rhG-CSF pendant le traitement chimiothérapeutique, nous avons développé un modèle physiologique du processus de granulopoïèse, qui incorpore les connaissances actuelles de pointe relatives à la production des neutrophiles des cellules souches hématopoïétiques dans la moelle osseuse. À ce modèle physiologique, nous avons intégré des modèles pharmacocinétiques/pharmacodynamiques (PK/PD) de deux médicaments: le PM00104 (Zalypsis®), un médicament anti-cancéreux, et le rhG-CSF (filgrastim). En se servant des principes fondamentaux sous-jacents à la physiologie, nous avons estimé les paramètres de manière exhaustive sans devoir recourir à l'ajustement des données, ce qui nous a permis de prédire des données cliniques provenant de 172 patients soumis au protocol CHOP14 (6 cycles de chimiothérapie avec une période de 14 jours où l'administration du rhG-CSF se fait du jour 4 au jour 13 post-chimiothérapie). En utilisant ce modèle physio-PK/PD, nous avons démontré que le nombre d'administrations du rhG-CSF pourrait être réduit de dix (pratique actuelle) à quatre ou même trois administrations, à condition de retarder le début du traitement prophylactique par le rhG-CSF. Dans un souci d'applicabilité clinique de notre approche de modélisation, nous avons investigué l'impact de la variabilité PK présente dans une population de patients, sur les prédictions du modèle, en intégrant des modèles PK de population (Pop-PK) des deux médicaments. En considérant des cohortes de 500 patients in silico pour chacun des cinq scénarios de variabilité plausibles et en utilisant trois marqueurs cliniques, soient le temps au nadir des neutrophiles, la valeur du nadir, ainsi que l'aire sous la courbe concentration-effet, nous avons établi qu'il n'y avait aucune différence significative dans les prédictions du modèle entre le patient-type et la population. Ceci démontre la robustesse de l'approche que nous avons développée et qui s'apparente à une approche de pharmacologie quantitative des systèmes (QSP). Motivés par l'utilisation du rhG-CSF dans le traitement d'autres maladies, comme des pathologies périodiques telles que la neutropénie cyclique, nous avons ensuite soumis l'étude du modèle au contexte des maladies dynamiques. En mettant en évidence la non validité du paradigme de la rétroaction des cytokines pour l'administration exogène des mimétiques du G-CSF, nous avons développé un modèle physiologique PK/PD novateur comprenant les concentrations libres et liées du G-CSF. Ce nouveau modèle PK a aussi nécessité des changements dans le modèle PD puisqu’il nous a permis de retracer les concentrations du G-CSF lié aux neutrophiles. Nous avons démontré que l'hypothèse sous-jacente de l'équilibre entre la concentration libre et liée, selon la loi d'action de masse, n'est plus valide pour le G-CSF aux concentrations endogènes et mènerait en fait à la surestimation de la clairance rénale du médicament. En procédant ainsi, nous avons réussi à reproduire des données cliniques obtenues dans diverses conditions (l'administration exogène du G-CSF, l'administration du PM00104, CHOP14). Nous avons aussi fourni une explication logique des mécanismes responsables de la réponse physiologique aux deux médicaments. Finalement, afin de mettre en exergue l’approche intégrative en pharmacologie adoptée dans cette thèse, nous avons démontré sa valeur inestimable pour la mise en lumière et la reconstruction des systèmes vivants complexes, en faisant le parallèle avec d’autres disciplines scientifiques telles que la paléontologie et la forensique, où une approche semblable a largement fait ses preuves. Nous avons aussi discuté du potentiel de la pharmacologie quantitative des systèmes appliquées au développement du médicament et à la médecine translationnelle, en se servant du modèle physio-PK/PD que nous avons mis au point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust joint modelling is an emerging field of research. Through the advancements in electronic patient healthcare records, the popularly of joint modelling approaches has grown rapidly in recent years providing simultaneous analysis of longitudinal and survival data. This research advances previous work through the development of a novel robust joint modelling methodology for one of the most common types of standard joint models, that which links a linear mixed model with a Cox proportional hazards model. Through t-distributional assumptions, longitudinal outliers are accommodated with their detrimental impact being down weighed and thus providing more efficient and reliable estimates. The robust joint modelling technique and its major benefits are showcased through the analysis of Northern Irish end stage renal disease patients. With an ageing population and growing prevalence of chronic kidney disease within the United Kingdom, there is a pressing demand to investigate the detrimental relationship between the changing haemoglobin levels of haemodialysis patients and their survival. As outliers within the NI renal data were found to have significantly worse survival, identification of outlying individuals through robust joint modelling may aid nephrologists to improve patient's survival. A simulation study was also undertaken to explore the difference between robust and standard joint models in the presence of increasing proportions and extremity of longitudinal outliers. More efficient and reliable estimates were obtained by robust joint models with increasing contrast between the robust and standard joint models when a greater proportion of more extreme outliers are present. Through illustration of the gains in efficiency and reliability of parameters when outliers exist, the potential of robust joint modelling is evident. The research presented in this thesis highlights the benefits and stresses the need to utilise a more robust approach to joint modelling in the presence of longitudinal outliers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The integration of satellite telemetry, remotely sensed environmental data, and habitat/environmental modelling has provided for a growing understanding of spatial and temporal ecology of species of conservation concern. The Republic of Cape Verde comprises the only substantial rookery for the loggerhead turtle Caretta caretta in the eastern Atlantic. A size related dichotomy in adult foraging patterns has previously been revealed for adult sea turtles from this population with a proportion of adults foraging neritically, whilst the majority forage oceanically. Here we describe observed habitat use and employ ecological niche modelling to identify suitable foraging habitats for animals utilising these two distinct behavioural strategies. We also investigate how these predicted habitat niches may alter under the influence of climate change induced oceanic temperature rises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectifs : Dans plusieurs pays la couverture vaccinale contre les virus du papillome humain (VPH) est associée aux déterminants sociaux des comportements sexuels et la participation au dépistage du cancer du col utérin. Ces vaccins protègent uniquement contre certains types de VPH, donc leur impact futur sur les VPH nonvaccinaux demeure incertain. L’hétérogénéité comportementale entre individus et biologique entre types de VPH affectera l’efficacité populationnelle de la vaccination contre les VPH. Les objectifs spécifiques de cette thèse étaient 1) de modéliser comment une couverture vaccinale inégale entre filles préadolescentes qui différeront selon leur activité sexuelle et leur participation au dépistage du cancer du col affectera l’efficacité populationnelle de la vaccination, 2) faire une synthèse et comparer les estimés d’efficacité croisée des vaccins contre les VPH dans des populations ADN-négatives aux VPH et 3) d’identifier, avec la modélisation, les devis d’étude épidémiologique qui réduisent les biais dans l’estimation des interactions biologiques entre types de VPH. Méthode : Nous avons utilisé des modèles de transmission dynamique et une revue systématique de la littérature pour répondre aux objectifs. 1) Nous avons modélisé une couverture vaccinale inégale entre filles qui différeront selon leur activité sexuelle et leur participation au dépistage, et examiné les changements postvaccination dans l’inégalité dans la prévalence des VPH et l’incidence des carcinomes malpighien (SCC) du col de l’utérus entre femmes ayant différents comportements. 2) Nous avons effectué une revue systématique et méta-analyse des efficacités croisées des vaccins contre les VPH estimées dans des populations ADNnégatives aux VPH. 3) Nous avons développé des modèles de transmission dynamique et d’interaction de deux types de VPH pour simuler les études épidémiologiques d’interactions entre les VPH. Résultats : Pour l’objectif 1), notre modèle de transmission prédit que l’efficacité populationnelle du vaccin dépendra de la distribution du vaccin dans la population. Après la vaccination, les inégalités absolues dans l’incidence de l’infection et des SCC entre groupes de femmes qui diffèrent selon leur activité sexuelle et leur participation au dépistage devraient diminuer. Inversement, les inégalités relatives pourraient augmenter si les femmes plus sexuellement actives et celles qui ne se font jamais dépister ont une couverture vaccinale moins élevée que les autres. Le taux d’incidence des SCC demeurera élevé chez les femmes qui ne sont jamais dépistées après la vaccination. L’efficacité croisée vaccinale et les interactions biologiques entre VPH ne sont pas encore assez bien caractérisées pour pouvoir prédire l’impact du vaccin sur les types de VPH nonvaccinaux. Pour l’objectif 2), notre méta-analyse des essais cliniques des vaccins suggère que le vaccin bivalent a une efficacité croisée significativement plus élevée que le quadrivalent contre les infections persistantes et lésions précancéreuses avec les VPH-31, 33 et 45. Les essais cliniques plus longs estiment une efficacité croisée plus faible. La modélisation des études épidémiologiques d’interactions pour l’objectif 3) montre que l’estimation des interactions biologiques entre types de VPH dans les études épidémiologiques est systématiquement biaisée par la corrélation entre le temps à risque d’infection avec un type de VPH et le temps à risque d’infection avec d’autres types de VPH. L’ajustement pour des marqueurs d’activité sexuelle ne réussit pas à contrôler ce biais. Une mesure valide des interactions biologiques entre types de VPH peut être obtenue uniquement avec des études épidémiologiques prospectives qui restreignent les analyses à des individus susceptibles ayant des partenaires sexuels infectés. Conclusion : L’hétérogénéité comportementale entre individus et l’hétérogénéité biologique entre VPH affecteront l’efficacité populationnelle du vaccin contre les VPH. Dans les contextes où les déterminants sociaux des comportements sexuels et la participation au dépistage sont aussi associés à la couverture vaccinale chez les préadolescentes, l’inégalité relative dans l’incidence des SCC risque d’augmenter. Ces comportements demeureront des facteurs de risque importants du cancer du col à l’avenir. L’effet à long terme du vaccin sur les types de VPH non-vaccinaux demeure incertain. Quoique nos résultats suggèrent que les vaccins offrent une efficacité croisée contre certains types de VPH, celle-ci pourrait diminuer après quelques années. Des interactions compétitives entre VPH pourraient exister malgré les associations observées entre les incidences des infections VPH, donc une augmentation post-vaccination de la prévalence des VPH non-vaccinaux demeure possible. Des devis d’analyse plus complexes sont nécessaires pour mesurer de façon valide les interactions biologiques entre les VPH dans les études épidémiologiques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ma thèse s’intéresse aux politiques de santé conçues pour encourager l’offre de services de santé. L’accessibilité aux services de santé est un problème majeur qui mine le système de santé de la plupart des pays industrialisés. Au Québec, le temps médian d’attente entre une recommandation du médecin généraliste et un rendez-vous avec un médecin spécialiste était de 7,3 semaines en 2012, contre 2,9 semaines en 1993, et ceci malgré l’augmentation du nombre de médecins sur cette même période. Pour les décideurs politiques observant l’augmentation du temps d’attente pour des soins de santé, il est important de comprendre la structure de l’offre de travail des médecins et comment celle-ci affecte l’offre des services de santé. Dans ce contexte, je considère deux principales politiques. En premier lieu, j’estime comment les médecins réagissent aux incitatifs monétaires et j’utilise les paramètres estimés pour examiner comment les politiques de compensation peuvent être utilisées pour déterminer l’offre de services de santé de court terme. En second lieu, j’examine comment la productivité des médecins est affectée par leur expérience, à travers le mécanisme du "learning-by-doing", et j’utilise les paramètres estimés pour trouver le nombre de médecins inexpérimentés que l’on doit recruter pour remplacer un médecin expérimenté qui va à la retraite afin de garder l’offre des services de santé constant. Ma thèse développe et applique des méthodes économique et statistique afin de mesurer la réaction des médecins face aux incitatifs monétaires et estimer leur profil de productivité (en mesurant la variation de la productivité des médecins tout le long de leur carrière) en utilisant à la fois des données de panel sur les médecins québécois, provenant d’enquêtes et de l’administration. Les données contiennent des informations sur l’offre de travail de chaque médecin, les différents types de services offerts ainsi que leurs prix. Ces données couvrent une période pendant laquelle le gouvernement du Québec a changé les prix relatifs des services de santé. J’ai utilisé une approche basée sur la modélisation pour développer et estimer un modèle structurel d’offre de travail en permettant au médecin d’être multitâche. Dans mon modèle les médecins choisissent le nombre d’heures travaillées ainsi que l’allocation de ces heures à travers les différents services offerts, de plus les prix des services leurs sont imposés par le gouvernement. Le modèle génère une équation de revenu qui dépend des heures travaillées et d’un indice de prix représentant le rendement marginal des heures travaillées lorsque celles-ci sont allouées de façon optimale à travers les différents services. L’indice de prix dépend des prix des services offerts et des paramètres de la technologie de production des services qui déterminent comment les médecins réagissent aux changements des prix relatifs. J’ai appliqué le modèle aux données de panel sur la rémunération des médecins au Québec fusionnées à celles sur l’utilisation du temps de ces mêmes médecins. J’utilise le modèle pour examiner deux dimensions de l’offre des services de santé. En premierlieu, j’analyse l’utilisation des incitatifs monétaires pour amener les médecins à modifier leur production des différents services. Bien que les études antérieures ont souvent cherché à comparer le comportement des médecins à travers les différents systèmes de compensation,il y a relativement peu d’informations sur comment les médecins réagissent aux changementsdes prix des services de santé. Des débats actuels dans les milieux de politiques de santé au Canada se sont intéressés à l’importance des effets de revenu dans la détermination de la réponse des médecins face à l’augmentation des prix des services de santé. Mon travail contribue à alimenter ce débat en identifiant et en estimant les effets de substitution et de revenu résultant des changements des prix relatifs des services de santé. En second lieu, j’analyse comment l’expérience affecte la productivité des médecins. Cela a une importante implication sur le recrutement des médecins afin de satisfaire la demande croissante due à une population vieillissante, en particulier lorsque les médecins les plus expérimentés (les plus productifs) vont à la retraite. Dans le premier essai, j’ai estimé la fonction de revenu conditionnellement aux heures travaillées, en utilisant la méthode des variables instrumentales afin de contrôler pour une éventuelle endogeneité des heures travaillées. Comme instruments j’ai utilisé les variables indicatrices des âges des médecins, le taux marginal de taxation, le rendement sur le marché boursier, le carré et le cube de ce rendement. Je montre que cela donne la borne inférieure de l’élasticité-prix direct, permettant ainsi de tester si les médecins réagissent aux incitatifs monétaires. Les résultats montrent que les bornes inférieures des élasticités-prix de l’offre de services sont significativement positives, suggérant que les médecins répondent aux incitatifs. Un changement des prix relatifs conduit les médecins à allouer plus d’heures de travail au service dont le prix a augmenté. Dans le deuxième essai, j’estime le modèle en entier, de façon inconditionnelle aux heures travaillées, en analysant les variations des heures travaillées par les médecins, le volume des services offerts et le revenu des médecins. Pour ce faire, j’ai utilisé l’estimateur de la méthode des moments simulés. Les résultats montrent que les élasticités-prix direct de substitution sont élevées et significativement positives, représentant une tendance des médecins à accroitre le volume du service dont le prix a connu la plus forte augmentation. Les élasticitésprix croisées de substitution sont également élevées mais négatives. Par ailleurs, il existe un effet de revenu associé à l’augmentation des tarifs. J’ai utilisé les paramètres estimés du modèle structurel pour simuler une hausse générale de prix des services de 32%. Les résultats montrent que les médecins devraient réduire le nombre total d’heures travaillées (élasticité moyenne de -0,02) ainsi que les heures cliniques travaillées (élasticité moyenne de -0.07). Ils devraient aussi réduire le volume de services offerts (élasticité moyenne de -0.05). Troisièmement, j’ai exploité le lien naturel existant entre le revenu d’un médecin payé à l’acte et sa productivité afin d’établir le profil de productivité des médecins. Pour ce faire, j’ai modifié la spécification du modèle pour prendre en compte la relation entre la productivité d’un médecin et son expérience. J’estime l’équation de revenu en utilisant des données de panel asymétrique et en corrigeant le caractère non-aléatoire des observations manquantes à l’aide d’un modèle de sélection. Les résultats suggèrent que le profil de productivité est une fonction croissante et concave de l’expérience. Par ailleurs, ce profil est robuste à l’utilisation de l’expérience effective (la quantité de service produit) comme variable de contrôle et aussi à la suppression d’hypothèse paramétrique. De plus, si l’expérience du médecin augmente d’une année, il augmente la production de services de 1003 dollar CAN. J’ai utilisé les paramètres estimés du modèle pour calculer le ratio de remplacement : le nombre de médecins inexpérimentés qu’il faut pour remplacer un médecin expérimenté. Ce ratio de remplacement est de 1,2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work provides a holistic investigation into the realm of feature modeling within software product lines. The work presented identifies limitations and challenges within the current feature modeling approaches. Those limitations include, but not limited to, the dearth of satisfactory cognitive presentation, inconveniency in scalable systems, inflexibility in adapting changes, nonexistence of predictability of models behavior, as well as the lack of probabilistic quantification of model’s implications and decision support for reasoning under uncertainty. The work in this thesis addresses these challenges by proposing a series of solutions. The first solution is the construction of a Bayesian Belief Feature Model, which is a novel modeling approach capable of quantifying the uncertainty measures in model parameters by a means of incorporating probabilistic modeling with a conventional modeling approach. The Bayesian Belief feature model presents a new enhanced feature modeling approach in terms of truth quantification and visual expressiveness. The second solution takes into consideration the unclear support for the reasoning under the uncertainty process, and the challenging constraint satisfaction problem in software product lines. This has been done through the development of a mathematical reasoner, which was designed to satisfy the model constraints by considering probability weight for all involved parameters and quantify the actual implications of the problem constraints. The developed Uncertain Constraint Satisfaction Problem approach has been tested and validated through a set of designated experiments. Profoundly stating, the main contributions of this thesis include the following: • Develop a framework for probabilistic graphical modeling to build the purported Bayesian belief feature model. • Extend the model to enhance visual expressiveness throughout the integration of colour degree variation; in which the colour varies with respect to the predefined probabilistic weights. • Enhance the constraints satisfaction problem by the uncertainty measuring of the parameters truth assumption. • Validate the developed approach against different experimental settings to determine its functionality and performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les changements climatiques récents ont mené à l’expansion de la répartition de plusieurs espèces méridionales, mais ont aussi causé l’extinction locale d’espèces se retrouvant à la limite de leur tolérance environnementale. Ces populations en expansion peuvent favoriser différentes stratégies d’histoire de vie en répondant à différents facteurs limitants. Dans cette thèse, je vise à déterminer et quantifier l’effet du climat et des évènements extrêmes sur le cycle de vie complet d’une espèce en expansion (le dindon sauvage) pour comprendre les changements au niveau populationnel ainsi que les mécanismes impliqués dans l’expansion de la distribution d’une espèce. J’ai défini les évènements extrêmes de pluie, d’épaisseur de neige au sol et de température, comme un évènement dont la fréquence est plus rare que le 10e et 90e percentile. En utilisant l’approche « Measure-Understand-Predict » (MUP), j’ai tout d’abord suivi trois populations le long d’un gradient latitudinal de sévérité hivernale pour mesurer l’effet de variables météorologiques sur la dynamique des populations. La survie des dindons sauvages diminuait drastiquement lorsque l’accumulation de neige au sol dépassait 30 cm pour une période de 10 jours et diminuait également avec la température. Au printemps, la persistance de la neige affectait négativement le taux d’initiation de la nidification et l’augmentation de la pluie diminuait la survie des nids. Dans une deuxième étape, j’ai examiné l’impact des évènements climatiques extrêmes et des processus démographiques impliqués dans l’expansion du dindon, liés à la théorie des histoires de vie pour comprendre la relation entre la dynamique de ces populations en expansions avec le climat. J’ai démontré que la fréquence des évènements extrêmes hivernaux et, d’une façon moins importante, les évènements extrêmes estivaux limitaient l’expansion nordique des dindons sauvages. J’ai appuyé, à l’aide de données empiriques et de modélisation, les hypothèses de la théorie classique des invasions biologiques en montrant que les populations en établissement priorisaient les paramètres reproducteurs tandis que la survie adulte était le paramètre démographique affectant le plus la dynamique des populations bien établies. De plus, les populations les plus au nord étaient composées d’individus plus jeunes ayant une espérance de vie plus faible, mais avaient un potentiel d’accroissement plus élevé que les populations établies, comme le suggère cette théorie. Finalement, j’ai projeté l’impact de la récolte sur la dynamique des populations de même que le taux de croissance de cette espèce en utilisant les conditions climatiques futures projetées par les modèles de l’IPCC. Les populations en établissement avaient un taux de récolte potentiel plus élevé, mais la proportion de mâles adultes, possédant des caractéristiques recherchées par les chasseurs, diminuait plus rapidement que dans les populations établies. Dans le futur, la fréquence des évènements extrêmes de pluie devrait augmenter tandis que la fréquence des évènements extrêmes de température hivernale et d’accumulation de neige au sol devraient diminuer après 2060, limitant probablement l’expansion nordique du dindon sauvage jusqu’en 2100. Cette thèse améliore notre compréhension des effets météorologiques et du climat sur l’expansion de la répartition des espèces ainsi que les mécanismes démographiques impliqués, et nous a permis de prédire la probabilité de l’expansion nordique de la répartition du dindon sauvage en réponse aux changements climatiques.