946 resultados para Bayesian Latent Class


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An introduction to thinking about and understanding probability that highlights the main pits and trapfalls that befall logical reasoning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An introduction to elicitation of experts' probabilities, which illustrates common problems with reasoning and how to circumvent them during elicitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An introduction to design of eliciting knowledge from experts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An introduction to eliciting a conditional probability table in a Bayesian Network model, highlighting three efficient methods for populating a CPT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two decades after its inception, Latent Semantic Analysis(LSA) has become part and parcel of every modern introduction to Information Retrieval. For any tool that matures so quickly, it is important to check its lore and limitations, or else stagnation will set in. We focus here on the three main aspects of LSA that are well accepted, and the gist of which can be summarized as follows: (1) that LSA recovers latent semantic factors underlying the document space, (2) that such can be accomplished through lossy compression of the document space by eliminating lexical noise, and (3) that the latter can best be achieved by Singular Value Decomposition. For each aspect we performed experiments analogous to those reported in the LSA literature and compared the evidence brought to bear in each case. On the negative side, we show that the above claims about LSA are much more limited than commonly believed. Even a simple example may show that LSA does not recover the optimal semantic factors as intended in the pedagogical example used in many LSA publications. Additionally, and remarkably deviating from LSA lore, LSA does not scale up well: the larger the document space, the more unlikely that LSA recovers an optimal set of semantic factors. On the positive side, we describe new algorithms to replace LSA (and more recent alternatives as pLSA, LDA, and kernel methods) by trading its l2 space for an l1 space, thereby guaranteeing an optimal set of semantic factors. These algorithms seem to salvage the spirit of LSA as we think it was initially conceived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multifractal properties of two indices of geomagnetic activity, D st (representative of low latitudes) and a p (representative of the global geomagnetic activity), with the solar X-ray brightness, X l , during the period from 1 March 1995 to 17 June 2003 are examined using multifractal detrended fluctuation analysis (MF-DFA). The h(q) curves of D st and a p in the MF-DFA are similar to each other, but they are different from that of X l , indicating that the scaling properties of X l are different from those of D st and a p . Hence, one should not predict the magnitude of magnetic storms directly from solar X-ray observations. However, a strong relationship exists between the classes of the solar X-ray irradiance (the classes being chosen to separate solar flares of class X-M, class C, and class B or less, including no flares) in hourly measurements and the geomagnetic disturbances (large to moderate, small, or quiet) seen in D st and a p during the active period. Each time series was converted into a symbolic sequence using three classes. The frequency, yielding the measure representations, of the substrings in the symbolic sequences then characterizes the pattern of space weather events. Using the MF-DFA method and traditional multifractal analysis, we calculate the h(q), D(q), and τ (q) curves of the measure representations. The τ (q) curves indicate that the measure representations of these three indices are multifractal. On the basis of this three-class clustering, we find that the h(q), D(q), and τ (q) curves of the measure representations of these three indices are similar to each other for positive values of q. Hence, a positive flare storm class dependence is reflected in the scaling exponents h(q) in the MF-DFA and the multifractal exponents D(q) and τ (q). This finding indicates that the use of the solar flare classes could improve the prediction of the D st classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability of bridges is crucial to people’s daily life and national economy. Bridge health prediction plays an important role in bridge management because maintenance optimization is implemented based on prediction results of bridge deterioration. Conventional bridge deterioration models can be categorised into two groups, namely condition states models and structural reliability models. Optimal maintenance strategy should be carried out based on both condition states and structural reliability of a bridge. However, none of existing deterioration models considers both condition states and structural reliability. This study thus proposes a Dynamic Objective Oriented Bayesian Network (DOOBN) based method to overcome the limitations of the existing methods. This methodology has the ability to act upon as a flexible unifying tool, which can integrate a variety of approaches and information for better bridge deterioration prediction. Two demonstrative case studies are conducted to preliminarily justify the feasibility of the methodology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though stadium style seating in large lecture theatres may suggest otherwise, effective teaching and learning is a not a spectator sport. A challenge in creating effective learning environments in both physical and virtual spaces is to provide optimal opportunity for student engagement in active learning. Queensland University of Technology (QUT) has developed the Open Web Lecture (OWL), a new web-based student response application, which seamlessly integrates a virtual learning environment within the physical learning space. The result is a blended learning experience; a fluid collaboration between academic and students connected to OWL via the University’s Wi-Fi using their own laptop or mobile web device. QUT is currently piloting the OWL application to encourage student engagement. OWL offers opportunities for participants to: • Post comments and questions • Reply to comments
 • "Like" comments
 • Poll students and review data • Review archived sessions. Many of these features instinctively appeal to student users of social networking media, yet avail the academic of control within the University network. Student privacy is respected through a system of preserving peer-peer anonymity, a functionality that seeks to address a traditional reluctance to speak up in large classes. The pilot is establishing OWL as an opportunity for engaging students in active learning opportunities by enabling • virtual learning in physical spaces for large group lectures, seminar groups, workshops and conferences • live collaborative technology connecting students and the academic via the wireless network using their own laptop or mobile device • an non- intimidating environment in which to ask questions • promotion of a sense of community • instant feedback • problem based learning. The student and academic response to OWL has been overwhelmingly positive, crediting OWL as an easy to use application, which creates effective learning opportunities though interactivity and immediate feedback. This poster and accompanying online presentation of the technology will demonstrate how OWL offers new possibilities for active learning in physical spaces by: • providing increased opportunity for student engagement • supporting a range of learners and learning activities • fostering blended learning experiences. The presentation will feature visual displays of the technology, its various interfaces and feedback including clips from interviews with students and academics participating in the early stages of the pilot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ORIGO Stepping Stones gives mathematics teachers the best of both worlds by delivering lessons and teacher guides on a digital platform blended with the more traditional printed student journals. This uniquely interactive program allows students to participate in exciting learning activites whilst still allowing the teacher to maintain control of learning outcomes. It is the first program in Australia to give teachers activities to differentiate instruction within each lesson and across school years. Written by a team of Australia's leading mathematics educators, this program integrates key research findings in a practical sequence of modules and lessons providing schools with a step-by-step approach to the new curriculum. Click links on the right to explore the program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.