977 resultados para Bacteriology of Antarctic paleosols
Resumo:
ABSTRACT: The ability of Antarctic krill Euphausia superba Dana to withstand the overwintering period is critical to their success. Laboratory evidence suggests that krill may shrink in body length during this time in response to the low availability of food. Nevertheless, verification that krill can shrink in the natural environment is lacking because winter data are difficult to obtain. One of the few sources of winter krill population data is from commercial vessels. We examined length-frequency data of adult krill (>35 mm total body length) obtained from commercial vessels in the Scotia-Weddell region and compared our results with those obtained from a combination of science and commercial sampling operations carried out in this region at other times of the year. Our analyses revealed body-length shrinkage in adult females but not males during overwinter, based on both the tracking of modal size classes over seasons and sex-ratio patterns. Other explanatory factors, such as differential mortality, immigration and emigration, could not explain the observed differences. The same pattern was also observed at South Georgia and in the Western Antarctic Peninsula. Fitted seasonally modulated von Bertalanffy growth functions predicted a pattern of overwintering shrinkage in all body-length classes of females, but only stagnation in growth in males. This shrinkage most likely reflects morphometric changes resulting from the contraction of the ovaries and is not necessarily an outcome of winter hardship. The sex-dependent changes that we observed need to be incorporated into life cycle and population dynamic models of this species, particularly those used in managing the fishery. KEY WORDS: Southern Ocean · Population dynamics · Production · Life cycle · Fishery
Resumo:
ABSTRACT: The ability of Antarctic krill Euphausia superba Dana to withstand the overwintering period is critical to their success. Laboratory evidence suggests that krill may shrink in body length during this time in response to the low availability of food. Nevertheless, verification that krill can shrink in the natural environment is lacking because winter data are difficult to obtain. One of the few sources of winter krill population data is from commercial vessels. We examined length-frequency data of adult krill (>35 mm total body length) obtained from commercial vessels in the Scotia-Weddell region and compared our results with those obtained from a combination of science and commercial sampling operations carried out in this region at other times of the year. Our analyses revealed body-length shrinkage in adult females but not males during overwinter, based on both the tracking of modal size classes over seasons and sex-ratio patterns. Other explanatory factors, such as differential mortality, immigration and emigration, could not explain the observed differences. The same pattern was also observed at South Georgia and in the Western Antarctic Peninsula. Fitted seasonally modulated von Bertalanffy growth functions predicted a pattern of overwintering shrinkage in all body-length classes of females, but only stagnation in growth in males. This shrinkage most likely reflects morphometric changes resulting from the contraction of the ovaries and is not necessarily an outcome of winter hardship. The sex-dependent changes that we observed need to be incorporated into life cycle and population dynamic models of this species, particularly those used in managing the fishery. KEY WORDS: Southern Ocean · Population dynamics · Production · Life cycle · Fishery
Resumo:
Understanding the mechanism associated with rates of weathering and evolution of rocks→sediment→soil→paleosol in alpine environments raises questions related to the impact of microbial mediation versus various diverse abiotic chemical/physical processes, even including the overall effect of cosmic impact/airburst during the early stage of weathering in Late Glacial (LG) deposits. This study is of a chronosequence of soils/paleosols, with an age range that spans the post–Little Ice Age (post-LIA; <150 yr), the Little Ice Age (LIA; AD 1500–1850), the middle Neoglacial (∼3 ka)–Younger Dryas (YD; <12.8 ka), and the LG (<15 ka). The goal is to elicit trends in weathering, soil morphogenesis, and related eubacterial population changes over the past 13–15 k.yr. The older LG/YD paleosols in the sequence represent soil morphogenesis that started during the closing stage of Pleistocene glaciation. These are compared with undated soils of midto late Neoglacial age, the youngest of LIA and post-LIA age. All profiles formed in a uniform parentmaterial ofmetabasalt composition and in moraine, rockfall, protalus, and alluvial fan deposits. Elsewhere in Europe,North America, and Asia, the cosmic impact/airburst event at 12.8 ka often produced a distinctive, carbon-rich “black mat” layer that shows evidence of high-temperature melting. At this alpine site, older profiles of similar LG age contain scorched and melted surface sediments that are otherwise similar in composition to the youngest/thinnest profiles developing in the catchment today. Moreover, microbial analysis of the sediments offers new insight into the genesis of these sediments: the C and Cu (u = unweathered) horizons in LG profiles present at 12.8 ka (now Ah/Bw) show bacterial population structures that differ markedly from recent alluvial/protalus sample bacterial populations. We propose here that these differences are, in part, a direct consequence of the age/cosmic impact/weathering processes that have occurred in the chronosequence. Of the several questions that emerge from these sequences, perhaps the most important involve the interaction of biotic-mineral factors, which need to be understood if we are to generally fully appreciate the role played by microbes in rock weathering.
Resumo:
Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.
Resumo:
In the present paper the A. A. reviewed the more fundamental problems in the ethiopathogenic process of bacterial endocardits and report the bacte¬riological observations done by them in 20 cases of the disecase observed at the Section of Pathological Anatomy and Bacteriology of the Hospital S. Francisco de Assis in charge of the Instituto Oswaldo Cruz. The A.A. isolated Pneumococcus from 10 out the 20 cases, Gonococcus from 2, Staphylococcus from 2, Streptococcus from 5 and Friedlaender bacil¬lus from 1 . The A.A. mainly lay stress on the necessity of the bacteriological exa¬minations being made by a specialist, owing to the difficulties sometimes met with and to the consequences of a detailed examination of the isolated germ.
Resumo:
Aquest estudi consisteix en l’augment de la resolució en la reconstrucció de la temperatura de l’aigua i l’aire del llac Baikal durant els últims 60.000 anys mitjançant l’ús de les proxies de reconstrucció de la temperatura TEX86 i MAAT, i la d’aportació de matèria orgànica d’origen terrestre, el BIT. L’objectiu general d’aquesta investigació és incrementar la resolució temporal en el mostreig del testimoni CON-01-603-02 per tal de millorar el registre de dades obtingudes i d’aquesta manera poder contrastar la hipòtesi de la interconnexió climàtica global, així com identificar esdeveniments climàtics sobtats, tals com els Heinrich events i els esdeveniments D-O. Un cop obtinguts els resultats s’ha realitzat l’anàlisi de la qualitat i fiabilitat de les dades a les resolucions de 5, 10 i 20 Kanys, i es conclou que existeixen diferències globals estadísticament significatives amb els resultats realitzats per Escala et al., (r.n.p [resultats no publicats]), la resolució dels quals es volia augmentar. S’han tractat d’anular aquestes diferències restant o bé sumant la diferència mitjana obtinguda entre les dues mostres en cada un dels intervals de 5 Kanys en què s’han donat aquestes. Els resultats integrats d’Escala et al.,(r.n.p) i els d’aquest estudi, aporten dades que recolzen l’hipòtesi de la interconnexió climàtica global, ja que al comparar-los amb els registres climàtics de Grenlàndia (GRIP2) i l’Antàrtica (Vostok) mostren respostes similars tant per les forces de Milankovitch com per les de subMilankovitch.
Resumo:
Monitoring of soil carbon storage may indicate possible effects of climate change on the terrestrial environment and it is therefore necessary to understand the influence of redox potential and chemical characteristics of humic substances (HS) of Antarctic soil. Five soils from King George Island were used. HS were extracted, quantified and characterized by potentiometry and the content of total carbon and nitrogen determined. HS of these soils had greater aliphatic character, low content of phenolic groups, lower acidity and lower formal standard electrode potential, compared to HS of soils from other regions, suggesting they are more likely to be oxidized.
Resumo:
The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of ‘teleconnection’ between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20–10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated 14C ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination.
Resumo:
Interpretation of ice-core records is currently limited by paucity of modelling at adequate temporal and spatial resolutions. Several key questions relate to mechanisms of polar amplification and inter-hemispheric coupling on glacial/interglacial timescales. Here, we present the first results from a large set of global ocean–atmosphere climate model ‘snap-shot’ simulations covering the last 120 000 years using the Hadley Centre climate model (HadCM3) at up to 1 kyr temporal resolution. Two sets of simulations were performed in order to examine the roles of orbit and greenhouse gases versus ice-sheet forcing of orbital-scale climate change. A series of idealised Heinrich events were also simulated, but no changes to aerosols or vegetation were prescribed. This paper focuses on high latitudes and inter-hemispheric linkages. The simulations reproduce polar temperature trends well compared to ice-core reconstructions, although the magnitude is underestimated. Polar amplification varies with obliquity, but this variability is dampened by including variations in land ice coverage, while the overall amplification factor increases. The relatively constant amplification of Antarctic temperatures (with ice-sheet forcing included) suggests it is possible to use Antarctic temperature reconstructions to estimate global changes (which are roughly half the magnitude). Atlantic Ocean overturning circulation varies considerably only with the introduction of Northern Hemisphere ice sheets, but only weakens in the North Atlantic in the deep glacial, when ocean–sea-ice feedbacks result in the movement of the region of deep convection to lower latitudes and with the introduction of freshwater to the surface North Atlantic in order to simulate Heinrich events.
Resumo:
A infecção das vias biliares é uma doença freqüente com alta morbidade e mortalidade, que pode variar de 10 a 60% dependendo de sua gravidade. A causa mais comum desta infecção é a presença de cálculos na via biliar principal que propicia o surgimento de bacteriobilia. O profundo conhecimento das características microbiológicas da bile nos casos de coledocolitíase e infecção das vias biliares são fundamentais para o melhor diagnóstico desta infecção e escolha da antibioticoterapia a ser instituída. Assim, o objetivo deste estudo foi de caracterizar os principais aspectos microbiológicos da bile dos pacientes com e sem coledocolitíase e avaliar sua importância na escolha dos antimicrobianos para o tratamento da infecção das vias biliares. Foram analisados 33 pacientes que foram divididos em um grupo de 10 pacientes sem coledocolitíase (grupo controle) no momento da Colangiografia Endoscópica (CPER) e em outro grupo de 23 pacientes com coledocolitíase. A bile de todos os pacientes foi coletada no início do procedimento endoscópico, através de catater introduzido na via biliar. O exame de microscopia direta com coloração de Gram e as culturas da bile foram negativas nos 10 pacientes que não apresentaram coledocolitíase durante a CPER. Dos 23 pacientes com cálculos na via biliar principal, 19 (83%) apresentaram culturas positivas. Desses 19 pacientes com culturas de bile positivas, 18 (94,7%) apresentaram microorganismos detectáveis à microscopia direta com coloração de Gram. Apenas um paciente apresentou crescimento de germe anaeróbio (Bacteroides fragilis). O cultivo de 28 bactérias teve predominância de microorganismos Gram negativos (18 bactérias- 64,3%). Os germes isolados foram E. coli (9, 32,1%), Klebsiella pneumoniae (5, 17,9%), Enterococcus faecalis (5, 17,9%), Streptococcus alfa-haemoliticus (3, 10,7%), Streptococcus viridans (2, 7,1%), Enterobacter cloacae (2, 7,1%), Panteona aglomerans (1, 3,6%) e Pseudomonas aeruginosa (1, 3,6%). Todos os pacientes com microorganismos detectados pela microscopia direta com coloração de Gram tiveram crescimento bacteriano em suas culturas, por outro lado nenhum paciente com cultura negativa apresentou microoorganismos à microsopia direta ( p= 0,0005). Nesses casos, a microsopia direta apresentou uma especificidade de 100% e sensibilidade de 80%. A análise quantitativa das culturas da bile mostrou que das 19 culturas positivas, 12 (63,2%) tiveram pelo menos um germe com contagem superior a 105 ufc/ml. Todas as bactérias Gram positivas isoladas foram sensíveis à ampicilina, da mesma forma que todas as Gram negativas foram sensíveis aos aminoglicosídeos. Os achados deste estudo demonstram uma boa correlação entre a microscopia direta da bile com coloração de Gram e os achados bacteriológicos das culturas da bile coletada por colangiografia endoscópica retrógrada. O esquema terapêutico antimicrobiano tradicionalmente empregado em nosso hospital, que inclui a combinação de ampicilina e gentamicina, parece ser adequado, pois apresenta eficácia terapêutica contra os principais microorganismos responsáveis pela infecção das vias biliares.
Resumo:
Monitoring of soil carbon storage may indicate possible effects of climate change on the terrestrial environment and it is therefore necessary to understand the influence of redox potential and chemical characteristics of humic substances (HS) of Antarctic soil. Five soils from King George Island were used. HS were extracted, quantified and characterized by potentiometry and the content of total carbon and nitrogen determined. HS of these soils had greater aliphatic character, low content of phenolic groups, lower acidity and lower formal standard electrode potential, compared to HS of soils from other regions, suggesting they are more likely to be oxidized.