994 resultados para BRAIN-STEM SLICES
Resumo:
Neural stem cells are precursors of neurons and glial cells. During brain development, these cells proliferate, migrate and differentiate into specific lineages. Recently neural stem cells within the adult central nervous system were identified. Informations are now emerging about regulation of stem cell proliferation, migration and differentiation by numerous soluble factors such as chemokines and cytokines. However, the signal transduction mechanisms downstream of these factors are less clear. Here, we review potential evidences for a novel central role of the transcription factor nuclear factor kappa B (NF-kappaB) in these crucial signal transduction processes. NF-kappaB is an inducible transcription factor detected in neurons, glia and neural stem cells. NF-kappaB was discovered by David Baltimore's laboratory as a transcription factor in lymphocytes. NF-kappaB is involved in many biological processes such as inflammation and innate immunity, development, apoptosis and anti-apoptosis. It has been recently shown that members of the NF-kappaB family are widely expressed by neurons, glia and neural stem cells. In the nervous system, NF-kappaB plays a crucial role in neuronal plasticity, learning, memory consolidation, neuroprotection and neurodegeneration. Recent data suggest an important role of NF-kappaB on proliferation, migration and differentiation of neural stem cells. NF-kappaB is composed of three subunits: two DNA-binding and one inhibitory subunit. Activation of NF-kappaB takes place in the cytoplasm and results in degradation of the inhibitory subunit, thus enabling the nuclear import of the DNA-binding subunits. Within the nucleus, several target genes could be activated. In this review, we suggest a model explaining the multiple action of NF-kappaB on neural stem cells. Furthermore, we discuss the potential role of NF-kappaB within the so-called brain cancer stem cells.
Resumo:
BACKGROUND: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-alpha) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. RESULTS: Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-alpha/beta-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-kappaB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-kappaB super-repressor IkappaB-AA1. Pharmacological blockade of IkappaB ubiquitin ligase activity led to comparable decreases in NF-kappaB activity and proliferation. In addition, IKK-beta gene product knock-down via siRNA led to diminished NF-kappaB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFbeta-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. CONCLUSION: TNF-mediated activation of IKK-beta resulted in activation of NF-kappaB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-kappaB pathway resulted in strongly increased proliferation of NSCs.
Resumo:
Neural stem cells (NSCs) are potential sources for cell therapy of neurodegenerative diseases and for drug screening. Despite their potential benefits, ethical and practical considerations limit the application of NSCs derived from human embryonic stem cells (ES) or adult brain tissue. Thus, alternative sources are required to satisfy the criteria of ready accessibility, rapid expansion in chemically defined media and reliable induction to a neuronal fate. We isolated somatic stem cells from the human periodontium that were collected during minimally invasive periodontal access flap surgery as part of guided tissue regeneration therapy. These cells could be propagated as neurospheres in serum-free medium, which underscores their cranial neural crest cell origin. Culture in the presence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) under serum-free conditions resulted in large numbers of nestin-positive/Sox-2-positive NSCs. These periodontium-derived (pd) NSCs are highly proliferative and migrate in response to chemokines that have been described as inducing NSC migration. We used immunocytochemical techniques and RT-PCR analysis to assess neural differentiation after treatment of the expanded cells with a novel induction medium. Adherence to substrate, growth factor deprivation, and retinoic acid treatment led to the acquisition of neuronal morphology and stable expression of markers of neuronal differentiation by more than 90% of the cells. Thus, our novel method might provide nearly limitless numbers of neuronal precursors from a readily accessible autologous adult human source, which could be used as a platform for further experimental studies and has potential therapeutic implications.
Resumo:
Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate. © 2015 Wiley Periodicals, Inc.
Resumo:
Background Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species including cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in woody tissues is a key trait for breeders to select upon for resistance. Results In this study a general, rapid and reliable approach to lesion quantification using image recognition and an artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study. Conclusions Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other phytopathogens, allowing more efficient selection and quantification of resistance responses.
Resumo:
The adult mammalian brain contains self-renewable, multipotent neural stem cells (NSCs) that are responsible for neurogenesis and plasticity in specific regions of the adult brain. Extracellular matrix, vasculature, glial cells, and other neurons are components of the niche where NSCs are located. This surrounding environment is the source of extrinsic signals that instruct NSCs to either self-renew or differentiate. Additionally, factors such as the intracellular epigenetics state and retrotransposition events can influence the decision of NSC`s fate into neurons or glia. Extrinsic and intrinsic factors form an intricate signaling network, which is not completely understood. These factors altogether reflect a few of the key players characterized so far in the new field of NSC research and are covered in this review. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 107-114 DOI:10.1002/wsbm:100
Resumo:
Some modifying factors may determine the risk of brain tumors. Until now, it could not be attempted to identify people at risk and also to improve significantly disease progression. Current therapy consists of surgical resection, followed by radiation therapy and chemotherapy. Despite of these treatments, the prognosis for patients is poor. In this review, we highlight general aspects concerning genetic alterations in brain tumors, namely astrocytomas, glioblastomas, oligodendrogliomas, medulloblastomas and ependymomas. The influence of these genetic alterations in patients' prognosis is discussed. Mutagen sensivity is associated with cancer risk. The convincing studies that linked DNA damages and DNA repair alterations with brain tumors are also described. Another important modifying factor is immunity. General immune response against cancer, tumor microenvironment and immune response, mechanisms of tumor escape, CNS tumor immunology, immune defects that impair anti-tumor systemic immunity in brain tumor patients and local immunosuppressive factors within CNS are also reviewed. New hope to treatment perspectives, as dendritic-cell-based vaccines is summarized too. Concluding, it seems well established that there is association between brain tumor risk and mutagen sensivity, which is highly heritable. Primary brain tumors cause depression in systemic host immunity; local immunosuppressive factors and immunological characteristics of tumor cells may explain the poor prognosis and DNA damages responses can alert immune system. However, it is necessary to clarify if individuals with both constitutional defects in immune functions and genetic instability have higher risk of developing brain tumors. Cytogenetic prospective studies and gene copy number variations analysis also must be performed in peripheral lymphocytes from brain tumor patients. © 2011 Bentham Science Publishers Ltd.
Resumo:
Objectives: The clinical translation of stem cell-based Regenerative Endodontics demands further development of suitable injectable scaffolds. Puramatrix™ is a defined, self-assembling peptide hydrogel which instantaneously polymerizes under normal physiological conditions. Here, we assessed the compatibility of Puramatrix™ with dental pulp stem cell (DPSC) growth and differentiation. Methods: DPSC cells were grown in 0.05-0.25% Puramatrix™. Cell viability was measured colorimetrically using the WST-1 assay. Cell morphology was observed in 3D modeling using confocal microscopy. In addition, we used the human tooth slice model with Puramatrix™ to verify DPSC differentiation into odontoblast-like cells, as measured by expression of DSPP and DMP-1. Results: DPSC survived and proliferated in Puramatrix™ for at least three weeks in culture. Confocal microscopy revealed that cells seeded in Puramatrix™ presented morphological features of healthy cells, and some cells exhibited cytoplasmic elongations. Notably, after 21 days in tooth slices containing Puramatrix™, DPSC cells expressed DMP-1 and DSPP, putative markers of odontoblastic differentiation. Significance: Collectively, these data suggest that self-assembling peptide hydrogels might be useful injectable scaffolds for stem cell-based Regenerative Endodontics. © 2012 Academy of Dental Materials.
Resumo:
A zona subgranular (ZSG) do giro denteado (GD) de mamíferos adultos é conhecida por produzir constantemente novos neurônios. A busca por novas moléculas que possam modular a formação de novas células neurais são bastante atuais. Visto que a Amazônia é conhecida mundialmente pela sua biodiversidade, com um potencial pouco explorado de fármacos naturais derivados de plantas medicinais típicas da região. O trabalho buscou investigar o efeito neurogênico do extrato aquoso (EA) da Physalis angulata e da substância purificada Fisalina D sobre as células-tronco do GD do hipocampo de camundongos adultos. Os camundongos machos (BALB/c), 6 a 8 semanas de idade foram divididos em quatro grupos experimentais: controle e tratados com EA ou substância purificada. Os animais receberam diferentes doses do extrato (0,1; 1 e 5 mg/Kg) e/ou substância purificada (5mg/Kg) ou salina (grupo controle), 5 horas depois uma única dose de 5-Bromodeoxiuridina (BrdU) [50mg/kg]. Em seguida, os animais foram sacrificados 24 horas ou 7 dias após a administração do BrdU. Os cérebros foram coletados e cortes coronais do hipocampo (40 μm) foram realizados para contagem das células BrdU-positivas no GD hipocampal. Para avaliação estatística realizamos análise de variância (ANOVA) das médias amostrais seguida pelo pós-teste t de Student. O EA promoveu um aumento significativo do número de células BrdU positivas no GD dos grupos tratados em relação ao grupo controle [Controle, 92±24 (n=9); 0,1mg/Kg, 160±22 (n=4); 1mg/Kg, 310±5 (n=4); 5mg/Kg, 501±24 (n=3)] nos animais sacrificados 24 horas após administração do BrdU. Quando os animais foram sacrificados 7 dias após administração do BrdU, o número de células BrdU+ no GD também foi maior no grupo tratado em relação ao controle [Controle, 107±7 (n=4); 5mg/Kg, 145±23 (n=4)]. Usando a substância purificada, Fisalina D, também observamos um aumento do número de células BrdU+ no GD do grupo tratado com a droga em relação ao grupo controle [Controle, 92±24 (n=9); Fisalina D, 5mg/Kg, 316±37 (n=3)]. Este resultado sugere que o EA e a sustância purificada, na dose de 5 mg/Kg, estimulam a proliferação de células BrdU-positivas na ZSG do GD do hipocampo de camundongos adultos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Resumo:
Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions. and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.
Resumo:
Aberrant expression of stem cell-related genes in tumors may confer more primitive and aggressive traits affecting clinical outcome. Here, we investigated expression and prognostic value of the neural stem cell marker CD133, as well as of the pluripotency genes LIN28 and OCT4 in 37 samples of pediatric medulloblastoma, the most common and challenging type of embryonal tumor. While most medulloblastoma samples expressed CD133 and LIN28, OCT4 expression was found to be more sporadic, with detectable levels occurring in 48% of tumors. Expression levels of OCT4, but not CD133 or LIN28, were significantly correlated with shorter survival (P <= 0.0001). Median survival time of patients with tumors hyperexpressing OCT4 and tumors displaying low/undetectable OCT4 expression were 6 and 153 months, respectively. More importantly, when patients were clinically stratified according to their risk of tumor recurrence, positive OCT4 expression in primary tumor specimens could discriminate patients classified as average risk but which further deceased within 5 years of diagnosis (median survival time of 28 months), a poor clinical outcome typical of high risk patients. Our findings reveal a previously unknown prognostic value for OCT4 expression status in medulloblastoma, which might be used as a further indicator of poor survival and aid postoperative treatment selection, with a particular potential benefit for clinically average risk patients.
Resumo:
Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×10(5) cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.