908 resultados para BRADYKININ POTENTIATING PEPTIDES
Resumo:
Obestatin is a peptide produced in the oxyntic mucosa of the stomach and co-localizes with ghrelin on the periphery of pancreatic islets. Several studies demonstrate that obestatin reduces food and water intake, decreases body weight gain, inhibits gastrointestinal motility, and modulates glucose-induced insulin secretion. In this study we evaluated the acute metabolic effects of human obestatin {1-23} and fragment peptides {1-10} or {11-23} in high-fat fed mice, and then investigated their solution structure by NMR spectroscopy and molecular modelling. Obestatins {1-23} and {11-23} significantly reduced food intake (86% and 90% respectively) and lowered glucose responses to feeding, whilst leaving insulin responses unchanged. No metabolic changes could be detected following the administration of obestatin (1-10). In aqueous solution none of the obestatin peptides possessed secondary structural features. However, in a 2,2,2-trifluoroethanol (TFE-d(3))-H2O solvent mixture, the structure of obestatin {1-23} was characterized by an a-helix followed by a single turn helix conformation between residues Pro(4) and Gln(15) and His(19) and Ala(22) respectively. Obestatin {1-10} showed no structural components whereas {11-23} contained an a-helix between residues Val(14) and Ser(20) in a mixed solvent. These studies are the first to elucidate the structure of human obestatin and provide clear evidence that the observed a-helical structures are critical for in vivo activity. Future structure/function studies may facilitate the design of novel therapeutic agents based on the obestatin peptide structure. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.
Resumo:
From defensive skin secretions acquired from two species of African hyperoliid frogs, Kassina maculata and Kassina senegalensis, we have isolated two structurally related, C-terminally amidated tridecapeptides of novel primary structure that exhibit a broad spectrum of biological activity. In reflection of their structural novelty and species of origin, we named the peptides kassorin M (FLEGLLNTVTGLLamide; 1387.8 Da) and kassorin S (FLGGILNTITGLLamide; 1329.8 Da), respectively. The primary structure and organisation of the biosynthetic precursors of kassorins M and S were deduced from cloned skin secretion-derived cDNA. Both open-reading frames encoded a single copy of kassorin M and S, respectively, located at the C-terminus. Kassorins display limited structural similarities to vespid chemotactic peptides (7/13 residues), temporin A (5/13 residues), the N-terminus of Lv-ranaspumin, a foam nest surfactant protein of the frog, Leptodactylus vastus, and an N-terminal domain of the equine sweat surfactant protein, latherin. Both peptides elicit histamine release from rat peritoneal mast cells. However, while kassorin S was found to possess antibacterial activity against Staphylococcus aureus, kassorin M was devoid of such activity. In contrast, kassorin M was found to contract the smooth muscle of guinea pig urinary bladder (EC50 = 4.66 nM) and kassorin S was devoid of this activity. Kassorins thus represent the prototypes of a novel family of peptides from the amphibian innate immune system as occurring in defensive skin secretions.
Resumo:
Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating “shotgun” cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog – the Fujian large-headed frog, Limnonectes fujianensis – and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 µM) and are devoid of haemolytic activity at concentrations up to 160 µM. Thus the “shotgun” cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data
Resumo:
The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata), in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C) residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues). Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.
Resumo:
A set of 57 synthetic peptides encompassing the entire triple-helical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg2+-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg2+. We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides.
Resumo:
Purpose. The purpose of this study was to examine the effect of synthetic endothelin (ET)-1 peptides with antigenic potential for binding and biologic activity using an in vitro model of microvascular pericytes.
Resumo:
Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections.