973 resultados para BOSE-EINSTEIN CONDENSATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emotions play a central role in mediation as they help to define the scope and direction of a conflict. When a party to mediation expresses (and hence entrusts) their emotions to those present in a mediation, a mediator must do more than simply listen - they must attend to these emotions. Mediator empathy is an essential skill for communicating to a party that their feelings have been heard and understood, but it can lead mediators into trouble. Whilst there might exist a theoretical divide between the notions of empathy and sympathy, the very best characteristics of mediators (caring and compassionate nature) may see empathy and sympathy merge - resulting in challenges to mediator neutrality. This article first outlines the semantic difference between empathy and sympathy and the role that intrapsychic conflict can play in the convergence of these behavioural phenomena. It then defines emotional intelligence in the context of a mediation, suggesting that only the most emotionally intelligent mediators are able to emotionally connect with the parties, but maintain an impression of impartiality – the quality of remaining ‘attached yet detached’ to the process. It is argued that these emotionally intelligent mediators have the common qualities of strong self-awareness and emotional self-regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para-Bose commutation relations are related to the SL(2,R) Lie algebra. The irreducible representation [script D]alpha of the para-Bose system is obtained as the direct sum Dbeta[direct-sum]Dbeta+1/2 of the representations of the SL(2,R) Lie algebra. The position and momentum eigenstates are then obtained in this representation [script D]alpha, using the matrix mechanical method. The orthogonality, completeness, and the overlap of these eigenstates are derived. The momentum eigenstates are also derived using the wave mechanical method by specifying the domain of the definition of the momentum operator in addition to giving it a formal differential expression. By a careful consideration in this manner we find that the two apparently different solutions obtained by Ohnuki and Kamefuchi in this context are actually unitarily equivalent. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Der Riese"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital Image