928 resultados para BLOOD-PRESSURE ELEVATION
Resumo:
Renal denervation can reduce blood pressure in patients with uncontrolled hypertension. The adherence to prescribed antihypertensive medication following renal denervation is unknown. This study investigated adherence to prescribed antihypertensive treatment by liquid chromatography-high resolution tandem mass spectrometry in plasma and urine at baseline and 6 months after renal denervation in 100 patients with resistant hypertension, defined as baseline office systolic blood pressure ≥140 mmHg despite treatment with ≥3 antihypertensive agents. At baseline, complete adherence to all prescribed antihypertensive agents was observed in 52 patients, 46 patients were partially adherent, and two patients were completely non-adherent. Baseline office blood pressure was 167/88 ± 19/16 mmHg with a corresponding 24-h blood pressure of 154/86 ± 15/13 mmHg. Renal denervation significantly reduced office and ambulatory blood pressure at 6-month follow-up by 15/5 mmHg (p < 0.001/p < 0.001) and 8/4 mmHg (p < 0.001/p = 0.001), respectively. Mean adherence to prescribed treatment was significantly reduced from 85.0 % at baseline to 80.7 %, 6 months after renal denervation (p = 0.005). The blood pressure decrease was not explained by improvements in adherence following the procedure. Patients not responding to treatment significantly reduced their drug intake following the procedure. Adherence was highest for angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and beta blockers (>90 %) and lowest for vasodilators (21 %). In conclusion, renal denervation can reduce office and ambulatory blood pressure in patients with resistant hypertension despite a significant reduction in adherence to antihypertensive treatment after 6 months.
Post-partum persistence of abnormal circadian pattern of blood pressure after preeclampsia [109-POS]
Resumo:
OBJECTIVES: Blunted nocturnal dip of blood pressure (BP) and reversed circadian rhythm have been described in preeclampsia (PE). Non-dipper status and preeclampsia are both associated with an increased risk of cardiovascular disease later in life. Complete recovery of BP in PE is reported to occur over a variable period of time. Twenty-four hours-ambulatory blood pressure measurement (ABPM) in the post-partum follow-up after a PE has not been described. The aim of this study was to assess 24h-ambulatory blood pressure pattern after a PE and to determine the prevalence of non-dipper status, nocturnal hypertension, white coat hypertension and masked hypertension. METHODS: This is an observational, prospective study on women who suffered from a preeclampsia. A 24h-ABPM was done 6 weeks post-partum at the Hypertension Unit of the University Hospitals of Geneva, concomitantly with a clinical and biological evaluation. RESULTS: Forty-five women were included in a preliminary analysis. Mean age was 33±6years, 57.3% were Caucasian, mean BMI before pregnancy was 24±5kg/m(2). Office and ambulatory BP are shown in Table 1. Prevalence of nocturnal hypertension was high and half of the women had no nocturnal dipping. The diagnosis of hypertension based on office BP was discordant with the diagnosis based on ABPM in 25% of women. CONCLUSIONS: The prevalence of increased nighttime BP and abnormal BP pattern is high at 6weeks post-partum in preeclamptic women. Early assessment of BP with ABPM after preeclampsia allows an early identification of women with persistent circadian abnormalities who might be at increased risk. It also provides a more accurate assessment than office BP. DISCLOSURES: A. Ditisheim: None. B. Ponte: None. G. Wuerzner: None. M. Burnier: None. M. Boulvain: None. A. Pechère-Bertschi: None.
Resumo:
BACKGROUND: Several distributions of country-specific blood pressure (BP) percentiles by sex, age, and height for children and adolescents have been established worldwide. However, there are no globally unified BP references for defining elevated BP in children and adolescents, which limits international comparisons of the prevalence of pediatric elevated BP. We aimed to establish international BP references for children and adolescents by using 7 nationally representative data sets (China, India, Iran, Korea, Poland, Tunisia, and the United States). METHODS AND RESULTS: Data on BP for 52 636 nonoverweight children and adolescents aged 6 to 19 years were obtained from 7 large nationally representative cross-sectional surveys in China, India, Iran, Korea, Poland, Tunisia, and the United States. BP values were obtained with certified mercury sphygmomanometers in all 7 countries by using standard procedures for BP measurement. Smoothed BP percentiles (50th, 90th, 95th, and 99th) by age and height were estimated by using the Generalized Additive Model for Location Scale and Shape model. BP values were similar between males and females until the age of 13 years and were higher in males than females thereafter. In comparison with the BP levels of the 90th and 95th percentiles of the US Fourth Report at median height, systolic BP of the corresponding percentiles of these international references was lower, whereas diastolic BP was similar. CONCLUSIONS: These international BP references will be a useful tool for international comparison of the prevalence of elevated BP in children and adolescents and may help to identify hypertensive youths in diverse populations.
Resumo:
BACKGROUND: Genome-wide association studies have linked CYP17A1 coding for the steroid hormone synthesizing enzyme 17α-hydroxylase (CYP17A1) to blood pressure (BP). We hypothesized that the genetic signal may translate into a correlation of ambulatory BP (ABP) with apparent CYP17A1 activity in a family-based population study and estimated the heritability of CYP17A1 activity. METHODS: In the Swiss Kidney Project on Genes in Hypertension, day and night urinary excretions of steroid hormone metabolites were measured in 518 participants (220 men, 298 women), randomly selected from the general population. CYP17A1 activity was assessed by 2 ratios of urinary steroid metabolites: one estimating the combined 17α-hydroxylase/17,20-lyase activity (ratio 1) and the other predominantly 17α-hydroxylase activity (ratio 2). A mixed linear model was used to investigate the association of ABP with log-transformed CYP17A1 activities exploring effect modification by urinary sodium excretion. RESULTS: Daytime ABP was positively associated with ratio 1 under conditions of high, but not low urinary sodium excretion (P interaction <0.05). Ratio 2 was not associated with ABP. Heritability estimates (SE) for day and night CYP17A1 activities were 0.39 (0.10) and 0.40 (0.09) for ratio 1, and 0.71 (0.09) and 0.55 (0.09) for ratio 2 (P values <0.001). CYP17A1 activities, assessed with ratio 1, were lower in older participants. CONCLUSIONS: Low apparent CYP17A1 activity (assessed with ratio 1) is associated with elevated daytime ABP when salt intake is high. CYP17A1 activity is heritable and diminished in the elderly. These observations highlight the modifying effect of salt intake on the association of CYP17A1 with BP.
Resumo:
Intracerebral haemorrhage (ICH) is a spontaneous extravasation of blood into brain parenchyma. Although ICH represents approximately only 15% of all strokes, it is one of the major causes of stroke-related death and disability. One of the causes of poor outcome is the haematoma growth. The association between elevated blood pressure (BP) and haematoma enlargement in acute ICH has not been clarified. Our objective is to try to identify this relationship that may suggest an immediate target for intervention to possibly improve outcomes in patients with spontaneous ICH and might settle the controversy surrounding the optimal management of blood pressure.We propose a retrospective revision using a sample present in our database of approximately 250 patients with primary ICH and less than 12h from symptoms onset. Systolic blood pressure levels (SBP) are assessed at baseline, at 6h, at 12h, at 24h and at 72h, being these last four the average levels of the different recordings during those time intervals. Haematoma growth will be defined as an increase in the volume of intraparenchymal haemorrhage of >33% as measured by image analysis on the 24-hour CT or 72-hour CT compared with the baseline CT scan. A qualified neuroradiologist not informed of the aim of the study, will review the CT images. The secondary objective will be to correlate the BP levels in the acute phase of ICH with clinical outcome. We will evaluate early neurologic deterioration at 72h by using the National Institutes of Health Stroke Scale (NIHSS); outcome at 90 days by using the modified Rankin scale and mortality at 72h and 90 days. The statistical analysis will be adjusted by possibly confounding variables
Resumo:
Background: Type 2 diabetes patients have a 2-4 fold risk of cardiovascular disease (CVD) compared to the general population. In type 2 diabetes, several CVD risk factors have been identified, including obesity, hypertension, hyperglycemia, proteinuria, sedentary lifestyle and dyslipidemia. Although much of the excess CVD risk can be attributed to these risk factors, a significant proportion is still unknown. Aims: To assess in middle-aged type 2 diabetic subjects the joint relations of several conventional and non-conventional CVD risk factors with respect to cardiovascular and total mortality. Subjects and methods: This thesis is part of a large prospective, population based East-West type 2 diabetes study that was launched in 1982-1984. It includes 1,059 middle-aged (45-64 years old) participants. At baseline, a thorough clinical examination and laboratory measurements were performed and an ECG was recorded. The latest follow-up study was performed 18 years later in January 2001 (when the subjects were 63-81 years old). The study endpoints were total mortality and mortality due to CVD, coronary heart disease (CHD) and stroke. Results: Physically more active patients had significantly reduced total, CVD and CHD mortality independent of high-sensitivity C-reactive protein (hs-CRP) levels unless proteinuria was present. Among physically active patients with a hs-CRP level >3 mg/L, the prognosis of CVD mortality was similar to patients with hs-CRP levels ≤3 mg/L. The worst prognosis was among physically inactive patients with hs-CRP levels >3 mg/L. Physically active patients with proteinuria had significantly increased total and CVD mortality by multivariate analyses. After adjustment for confounding factors, patients with proteinuria and a systolic BP <130 mmHg had a significant increase in total and CVD mortality compared to those with a systolic BP between 130 and 160 mmHg. The prognosis was similar in patients with a systolic BP <130 mmHg and ≥160 mmHg. Among patients without proteinuria, a systolic BP <130 mmHg was associated with a non-significant reduction in mortality. A P wave duration ≥114 ms was associated with a 2.5-fold increase in stroke mortality among patients with prevalent CHD or claudication. This finding persisted in multivariable analyses. Among patients with no comorbidities, there was no relationship between P wave duration and stroke mortality. Conclusions: Physical activity reduces total and CVD mortality in patients with type 2 diabetes without proteinuria or with elevated levels of hs-CRP, suggesting that the anti-inflammatory effect of physical activity can counteract increased CVD morbidity and mortality associated with a high CRP level. In patients with proteinuria the protective effect was not, however, present. Among patients with proteinuria, systolic BP <130 mmHg may increase mortality due to CVD. These results demonstrate the importance of early intervention to prevent CVD and to control all-cause mortality among patients with type 2 diabetes. The presence of proteinuria should be taken into account when defining the target systolic BP level for prevention of CVD deaths. A prolongation of the duration of the P wave was associated with increased stroke mortality among high-risk patients with type 2 diabetes. P wave duration is easy to measure and merits further examination to evaluate its importance for estimation of the risk of stroke among patients with type 2 diabetes.
Resumo:
Autonomic neuropathy is a frequent complication of diabetes associated with higher morbidity and mortality in symptomatic patients, possibly because it affects autonomic regulation of the sinus node, reducing heart rate (HR) variability which predisposes to fatal arrhythmias. We evaluated the time course of arterial pressure and HR and indirectly of autonomic function (by evaluation of mean arterial pressure (MAP) variability) in rats (164.5 ± 1.7 g) 7, 14, 30 and 120 days after streptozotocin (STZ) injection, treated with insulin, using measurements of arterial pressure, HR and MAP variability. HR variability was evaluated by the standard deviation of RR intervals (SDNN) and root mean square of successive difference of RR intervals (RMSSD). MAP variability was evaluated by the standard deviation of the mean of MAP and by 4 indices (P1, P2, P3 and MN) derived from the three-dimensional return map constructed by plotting MAPn x [(MAPn+1) - (MAPn)] x density. The indices represent the maximum concentration of points (P1), the longitudinal axis (P2), and the transversal axis (P3) and MN represents P1 x P2 x P3 x 10-3. STZ induced increased urinary glucose in diabetic (D) rats compared to controls (C). Seven days after STZ, diabetes reduced resting HR from 380.6 ± 12.9 to 319.2 ± 19.8 bpm, increased HR variability, as demonstrated by increased SDNN, from 11.77 ± 1.67 to 19.87 ± 2.60 ms, did not change MAP, and reduced P1 from 61.0 ± 5.3 to 51.5 ± 1.8 arbitrary units (AU), P2 from 41.3 ± 0.3 to 29.0 ± 1.8 AU, and MN from 171.1 ± 30.2 to 77.2 ± 9.6 AU of MAP. These indices, as well as HR and MAP, were similar for D and C animals 14, 30 and 120 days after STZ. Seven-day rats showed a negative correlation of urinary glucose with resting HR (r = -0.76, P = 0.03) as well as with the MN index (r = -0.83, P = 0.01). We conclude that rats with short-term diabetes mellitus induced by STZ presented modified autonomic control of HR and MAP which was reversible. The metabolic control may influence these results, suggesting that insulin treatment and a better metabolic control in this model may modify arterial pressure, HR and MAP variability
Resumo:
Lack of the physiological nocturnal fall in blood pressure (BP) has been found in diabetics and it seems to be related to the presence of diabetic complications. The present study examined the changes in the nocturnal BP pattern of 8 normotensive insulin-dependent diabetic adolescents without nephropathy following improvement in glycemic control induced by an 8-day program of adequate diet and exercise. The same number of age- and sex-matched control subjects were studied. During the first and eighth nights of the program, BP was obtained by ambulatory BP monitoring. After a 10-min rest, 3 BP and heart rate (HR) recordings were taken and the mean values were considered to represent their awake values. The monitor was programmed to cuff insufflation every 20 min from 10:00 p.m. to 7:00 a.m. The glycemic control of diabetics improved since glycemia (212.0 ± 91.5 to 140.2 ± 69.1 mg/dl, P<0.03), urine glucose (12.7 ± 11.8 to 8.6 ± 6.4 g/24 h, P = 0.08) and insulin dose (31.1 ± 7.7 to 16.1 ± 9.7 U/day, P<0.01) were reduced on the last day. The mean BP of control subjects markedly decreased during the sleeping hours of night 1 (92.3 ± 6.4 to 78.1 ± 5.0 mmHg, P<0.001) and night 8 (87.3 ± 6.7 to 76.9 ± 3.6 mmHg, P<0.001). Diabetic patients showed a slight decrease in mean BP during the first night. However, the fall in BP during the nocturnal period increased significantly on the eighth night. The average awake-sleep BP variation was significantly higher at the end of the study (4.2 vs 10.3%, P<0.05) and this ratio turned out to be similar to that found in the control group (10.3 vs 16.3%). HR variation also increased on the eighth night in the diabetics. Following the metabolic improvement obtained at the end of the period, the nocturnal BP variation of diabetics was close to the normal pattern. We suggest that amelioration of glycemic control may influence the awake-sleep BP and HR differences. This effect may be due at least in part to an attenuated insulin stimulation of sympathetic activity
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity
Resumo:
This study evaluates the influence of different concentrations of calcium on blood pressure of normotensive rats. Four groups of Wistar rats (A, B, C and D) had free access to modified isocaloric and isoproteic diets containing 0.2, 0.5, 2 and 4 g% calcium as calcium carbonate for a period of 30 days. Systolic and diastolic arterial blood pressures were monitored in awake rats by the indirect tail cuff method using a Physiograph equipped with transducers and preamplifiers. Body weight and length and food intake were monitored. Under the conditions of the present experiment, the systolic and diastolic arterial blood pressures of group D rats fed a diet containing 4 g% calcium were significantly (P<0.05) lower compared to rats of the other groups.
Resumo:
To evaluate the effect of exercise intensity on post-exercise cardiovascular responses, 12 young normotensive subjects performed in a randomized order three cycle ergometer exercise bouts of 45 min at 30, 50 and 80% of VO2peak, and 12 subjects rested for 45 min in a non-exercise control trial. Blood pressure (BP) and heart rate (HR) were measured for 20 min prior to exercise (baseline) and at intervals of 5 to 30 (R5-30), 35 to 60 (R35-60) and 65 to 90 (R65-90) min after exercise. Systolic, mean, and diastolic BP after exercise were significantly lower than baseline, and there was no difference between the three exercise intensities. After exercise at 30% of VO2peak, HR was significantly decreased at R35-60 and R65-90. In contrast, after exercise at 50 and 80% of VO2peak, HR was significantly increased at R5-30 and R35-60, respectively. Exercise at 30% of VO2peak significantly decreased rate pressure (RP) product (RP = HR x systolic BP) during the entire recovery period (baseline = 7930 ± 314 vs R5-30 = 7150 ± 326, R35-60 = 6794 ± 349, and R65-90 = 6628 ± 311, P<0.05), while exercise at 50% of VO2peak caused no change, and exercise at 80% of VO2peak produced a significant increase at R5-30 (7468 ± 267 vs 9818 ± 366, P<0.05) and no change at R35-60 or R65-90. Cardiovascular responses were not altered during the control trial. In conclusion, varying exercise intensity from 30 to 80% of VO2peak in young normotensive humans did not influence the magnitude of post-exercise hypotension. However, in contrast to exercise at 50 and 80% of VO2peak, exercise at 30% of VO2peak decreased post-exercise HR and RP.
Resumo:
The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.
Resumo:
No significant difference has been demonstrated in the altered circadian blood pressure pattern between the pituitary-dependent and adrenal forms of Cushing's syndrome before surgery. The effect of therapy, however, proved to be different. The mesor was normalized in the pituitary-dependent Cushing's syndrome more conspicuously for systolic than for diastolic blood pressure. In Cushing's syndrome due to adrenal adenoma, systolic and diastolic blood pressure mesors have been even significantly "overnormalized" after treatment, being 11 to 27 and 2 to 13 mmHg (95% confidence) lower than corresponding mesors in controls. There was no difference between forms in the effect of treatment on blood pressure amplitudes, which remained significantly lower than in controls. Finally, acrophase patterns were partly normalized after treatment of the pituitary-dependent form only for diastolic blood pressure, while both systolic and diastolic blood pressure acrophases were normalized in the treated adrenal form. In conclusion, complete normalization of the pattern of daily blood pressure profile has not been achieved in either form of the syndrome. This may be one of the reasons for the reduced long-term survival after surgical cure of hypercortisolism, than expected.