482 resultados para BEADS
Resumo:
There is evidence that mesenchymal stem cells (MSCs) can differentiate towards an intervertebral disc (IVD)-like phenotype. We compared the standard chondrogenic protocol using transforming growth factor beta-1 (TGFß) to the effects of hypoxia, growth and differentiation factor-5 (GDF5), and coculture with bovine nucleus pulposus cells (bNPC). The efficacy of molecules recently discovered as possible nucleus pulposus (NP) markers to differentiate between chondrogenic and IVD-like differentiation was evaluated. MSCs were isolated from human bone marrow and encapsulated in alginate beads. Beads were cultured in DMEM (control) supplemented with TGFß or GDF5 or under indirect coculture with bNPC. All groups were incubated at low (2 %) or normal (20 %) oxygen tension for 28 days. Hypoxia increased aggrecan and collagen II gene expression in all groups. The hypoxic GDF5 and TGFß groups demonstrated most increased aggrecan and collagen II mRNA levels and glycosaminoglycan accumulation. Collagen I and X were most up-regulated in the TGFß groups. From the NP markers, cytokeratin-19 was expressed to highest extent in the hypoxic GDF5 groups; lowest expression was observed in the TGFß group. Levels of forkhead box F1 were down-regulated by TGFß and up-regulated by coculture with bNPC. Carbonic anhydrase 12 was also down-regulated in the TGFß group and showed highest expression in the GDF5 group cocultured with bNPC under hypoxia. Trends in gene expression regulation were confirmed on the protein level using immunohistochemistry. We conclude that hypoxia and GDF5 may be suitable for directing MSCs towards the IVD-like phenotype.
Resumo:
Degeneration of intervertebral discs (IVD) is one of the main causes of back pain and tissue engineering has been proposed as a treatment. Tissue engineering requires the use of highly expensive growth factors, which might, in addition, lack regulatory approval for human use. In an effort to find readily available differentiation factors, we tested three molecules – dexamethasone, triiodothyronine (T3) and insulin – on human IVD cells isolated after surgery, expanded in vitro and transferred into alginate beads. Triplicates containing 40 ng/ml dexamethasone, 10 nM T3 and 10 µg/ml insulin, together with a positive control (10 ng/mL transforming growth factor (TGF)-beta 1), were sampled weekly over six weeks and compared to a negative control. Furthermore, we compared the results to cultures with optimized chondrogenic media and under hypoxic condition (2% O2). Glycosaminoglycan (GAG) determination by Alcian Blue assay and histological staining showed dexamethasone to be more effective than T3 and insulin, but less than TGF-beta1. DNA quantification showed that only dexamethasone stimulated cell proliferation. qPCR demonstrated that TGF-beta1 and the optimized chondrogenic groups increased the expression of collagen type II, while aggrecan was stimulated in cultures containing dexamethasone. Hypoxia increased GAG accumulation, collagen type II and aggrecan expression, but had no effect on or even lowered cell number. In conclusion, dexamethasone is a valuable and cost-effective molecule for chondrogenic and viability induction of IVD cells under normoxic and hypoxic conditions, while insulin and T3 did not show significant differences.
Resumo:
In recent years, layered manufacturing (LM) processes have begun to progress from rapid prototyping techniques towards rapid manufacturing methods, where the objective is now to produce finished components for potential end use in a product (Caulfield et al., 2007). LM is especially promising for the fabrication of specific need, low volume products such as replacement parts for larger systems. This trend accentuates the need for a thorough understanding of the associated mechanical properties and the resulting behavior of parts produced by layered methods. Not only must the base material be durable, but the mechanical properties of the layered components must be sufficient to meet in-service loading and operational requirements, and be reasonably comparable to parts produced by more traditional manufacturing techniques. This chapter presents the details of a study completed to quantitatively analyze the potential of fused deposition modelling to fully evolve into a rapid manufacturing tool. The project objective is to develop an understanding of the dependence of the mechanical properties of FDM parts on raster orientation and to assess whether these parts are capable of maintaining their integrity while under service loading. The study examines the effect of fiber orientation, i.e. the direction of the polymer beads relative to the loading direction of the part, on a variety of important mechanical properties of ABS components fabricated by fused deposition modeling. Tensile, compressive, flexural, impact, and fatigue strength properties of FDM specimens are examined, evaluated, and placed in context in comparison with the properties of injection molded ABS parts.
Resumo:
The major endocannabinoids (ECs) arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) and related N-ethanolamines act as full and partial agonists at CB(1), CB(2), GPR55, PPAR and TRPV1 receptors to various degrees. These receptors are also expressed in immune cells like monocytes/macrophages where they regulate different cellular processes. In this study, potentially bioactive lipids in fetal bovine sera (FBS) were quantified by GC/MS. We found that several commercial FBS contain ECs and bioactive amounts of 2-AG (250-700 nM). We show that residual 2-AG from FBS can activate primary macrophages and increase migration and RANKL-stimulated osteoclastogenesis. Furthermore, 2-AG high-content sera specifically upregulated LPS-stimulated IL-6 expression in U937 cells. Polymyxin B beads may be used to selectively and efficiently remove 2-AG from sera, but not arachidonic acid and N-ethanolamines. In conclusion, 2-AG in cell culture media may significantly influence cellular experiments. CD14+ mononuclear cells which strongly express surface CB receptors may be particularly sensitive towards residual 2-AG from FBS. Therefore, the EC content in culture media should be controlled in biological experiments involving monocytes/macrophages.
Resumo:
Emerging evidence has shown that oxidation of RNA, including messenger RNA (mRNA), is elevated in several age-related diseases, although investigation of oxidized levels of individual RNA species has been limited. Recently we reported that an aldehyde reactive probe (ARP) quantitatively reacts with oxidatively modified depurinated/depyrimidinated (abasic) RNA. Here we report a novel method to isolate oxidized RNA using ARP and streptavidin beads. An oligo RNA containing abasic sites that were derivatized with ARP was pulled down by streptavidin beads, whereas a control oligo RNA was not. In vitro oxidized RNA, as well as total cellular RNA, isolated from oxidatively stressed cells was also pulled down, dependent on oxidation level, and concentrated in the pull-down fraction. Quantitative reverse transcription polymerase chain reaction (RT-PCR) using RNA in the pull-down fraction demonstrated that several gene transcripts were uniquely increased in the fraction by oxidative stress. Thus, our method selectively concentrates oxidized RNA by pull-down and enables the assessment of oxidation levels of individual RNA species. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.
Resumo:
The quantification of the structural properties of snow is traditionally based on model-based stereology. Model-based stereology requires assumptions about the shape of the investigated structure. Here, we show how the density, specific surface area, and grain boundary area can be measured using a design-based method, where no assumptions about structural properties are necessary. The stereological results were also compared to X-ray tomography to control the accuracy of the method. The specific surface area calculated with the stereological method was 19.8 ± 12.3% smaller than with X-ray tomography. For the density, the stereological method gave results that were 11.7 ± 12.1% larger than X-ray tomography. The statistical analysis of the estimates confirmed that the stereological method and the sampling used are accurate. This stereological method was successfully tested on artificially produced ice beads but also on several snow types. Combining stereology and polarisation microscopy provides a good estimate of grain boundary areas in ice beads and in natural snow, with some limitatio
Resumo:
BACKGROUND: The aim of this study was to evaluate the efficacy of a combination graft, using recombinant human bone morphogenetic protein-2 (rhBMP-2) and culture-expanded cells derived from bone marrow, for bone regeneration in a nonhuman primate mandible. METHODS: Five Japanese monkeys were used. Three milliliters of bone marrow was obtained from the tibia and plated into culture flasks. Adherent cells were cultured until near confluence; then, the proliferated cells were transferred to a three-dimensional culture system using collagen beads as the cell carrier. The medium was supplemented with ascorbic acid, beta-glycerophosphate, and dexamethasone to promote osteoblastic differentiation. After further proliferation on beads, the cells were mixed with a collagen sponge that was impregnated with rhBMP-2 and grafted into surgically created segmental bone defects of the mandibles. Three animals received this treatment, and either culture-expanded cells alone or collagen beads without cells were implanted into the remaining two monkeys as controls. The animals were killed 24 weeks after surgery, and the results were assessed by radiographic and histologic evaluation. RESULTS: The combination graft of culture-expanded bone marrow cells with rhBMP-2 in a collagen sponge regenerated the mandibular bone completely. By contrast, the graft of culture-expanded cells alone resulted in only a small amount of bone formation, and the implantation of collagen beads alone led to no bone formation. CONCLUSION: The combination graft of rhBMP-2 and culture-expanded cells, which requires only a small amount of bone marrow, is a reliable method for the reconstruction of segmental bone defects of the mandible.
Resumo:
Sprouting of new capillaries from pre-existing blood vessels is a hallmark of angiogenesis during embryonic development and solid tumor growth [1]. In addition to the vascular endothelial growth factor (VEGF) and its receptors, the Tie receptors and their newly identified ligands, the angiopoietins, have been implicated in the control of blood vessel formation [2,3]. Although 'knockouts' of the gene encoding the Tie2 receptor, or its activating ligand angiopoietin-1 (Ang1), result in embryonic lethality in mice due to an absence of remodeling and sprouting of blood vessels [4,5], biological activity in vitro has not yet been described for this receptor-ligand system. In an assay in which a monolayer of endothelial cells were cultured on microcarrier beads and embedded in three-dimensional fibrin gels, recombinant Ang1 (0.5-10 nM) induced the formation of capillary sprouts in a dose-dependent manner that was completely inhibited by soluble Tie2 receptor extracellular domains. In contrast with VEGF, which also induced sprouting of capillaries, Ang1 was only very weakly mitogenic for endothelial cells. Suboptimal concentrations of VEGF and Ang1 acted synergistically to induce sprout formation. Thus, the biological activity of Ang1 in vitro is consistent with the specific phenotype of mice deficient in Tie2 or Ang1. The data suggest that, like in other developmental systems, blood vessel formation requires a hierarchy of master-control genes in which VEGF and angiopoietins, along with their receptors, are amongst the most important regulators.
Resumo:
BACKGROUND: In human T cells, telomerase is transiently expressed upon activation and stimulation and, as shown previously, telomerase levels are able to control the lifespan of T cells. To improve T-cell expansion it is of critical importance to understand the effects of culture parameters on telomerase activity and lifespan. METHODS: We investigated the influence of culture condition (FCS, human AB serum and autologous serum) and stimulation (PHA/feeder cells, anti-CD3/CD28 beads) on the lifespan, clonogenicity (number of positive wells), cell cycle, telomerase activity and telomere length of T cells in vitro. RESULTS: The proliferative lifespan of T cells expanded with PHA/feeder cells and autologous serum from different donors was doubled compared with stimulation with PHA/feeder cells and AB serum. No or only a small difference was found for T cells expanded with anti-CD3/CD28 beads and autologous or AB serum. The use of autologous serum also increased the clonogenicity to about three-fold compared with the use of AB serum or FCS, without any signs of differences in the fractions of cycling cells. Interestingly, T cells cultured with autologous serum exhibited a significantly higher telomerase activity at day 6 after stimulation and a reduced decline of telomerase activity compared with cultures with AB serum. DISCUSSION: The use of autologous serum combined with PHA stimulation and feeder cells remarkably extends the proliferative lifespan and clonogenicity and increases the telomerase activity of human T cells in vitro. This might be useful for applications where large numbers of specific T cells are required.
Inhibition of iodine organification and regulation of follicular size in rat thyroid tissue in vitro
Resumo:
The factors mediating the accumulation of thyroglobulin are of great importance to the understanding of the pathogenesis of human and experimentally induced colloid goiters. To elucidate further the underlying cellular mechanism, thyroid fragments from newborn rats were incorporated into semisolid alginate beads and were cultured as three-dimensional organoids for up to 21 d. In five parallel cultures, the medium contained either no supplements (group A), Nal (group B), thyroid-stimulating hormone (TSH) (group C), Nal plus TSH in the same concentrations as B and C (group D), or Nal and TSH (as in group D) plus methimazole (MMI, group E). The thyroid organoids maintained morphological integrity, functional activity, and ability to proliferate in vitro. Addition of iodine to the cultures significantly increased mean (+/-SEM) follicular diameters from 19.5 +/- 0.7 microm in controls to 33.9 +/- 2.2 microm (p < 0.0001) when NaI was added alone (group B), and 30.4 +/- 1.7 microm (p < 0.0001) when combined with TSH (group D). The effect of NaI on follicular size was abolished by MMI (group E, follicular diameter 23.5 +/- 1.3 microm). The results presented support the recent finding, using a rat colloid goiter model, that not only TSH but also iodine organification or its inhibition are important factors in modulating follicular morphology.
Resumo:
Interactions between follicular epithelial cells and extracellular matrix (ECM) are supposed to play an important role in the development and maintenance of thyroid tissue architecture. In the present study we have therefore investigated the synthesis of ECM components by a feline thyroid cell line which is able to form follicle-like structures in vitro, and also in v-ras-transfected and control-transfected sublines. Transfections were performed by lipofection with pZSR (viral Harvey ras gene; neo) and pSV2-neo (control, neo only) plasmids. We have adapted a semisolid culture system composed exclusively of polymerized alginate and therefore devoid of ECM components. Feline cells embedded in alginate gels as single cells and cultured for up to 90 days formed cell clusters within 10 days. Follicle-like structures were formed in the original cell lines and also in the v-ras- and control-transfected cells. Differences in proliferation rates were observed, the v-ras-transfected cells growing up to two to three times faster than the non-transfected cells. Immunostaining was done using rabbit first antibodies directed against mouse collagen IV, human fibronectin, laminin (tumor Engelbreth-Holm-Swarm laminin), perlecan and other ECM components. For comparison, immunostaining was also performed on cryosections of nodular goiters of six hyperthyroid cats. The cell lines and their transfected clones stained strongly positive for collagen IV and fibronectin, and positively but less strongly for laminin and perlecan. The cat goiter tissue stained positively for collagen IV, laminin, perlecan, and fibronectin, and positive staining for S-laminin (containing the beta2-chain) was seen in blood vessel walls in this tissue. In conclusion, cat cell lines grow three-dimensionally in alginate beads over several weeks, they form follicle-like structures and express the same ECM components as the native cat goiter tissue. Transfection with v-ras does increase proliferation rate, but does not fundamentally alter formation of follicle-like structures and ECM expression. Alginate gel culture is a promising new tool for the study of follicular morphogenesis, polarity, the expression pattern of ECM components and of the interaction between thyrocytes and ECM. It avoids interference caused by gels composed of ECM components.
Resumo:
This study investigated the uptake, kinetics and cellular distribution of different surface coated quantum dots (QDs) before relating this to their toxicity. J774.A1 cells were treated with organic, COOH and NH2 (PEG) surface coated QDs (40 nM). Model 20 nm and 200 nm COOH-modified coated polystyrene beads (PBs) were also examined (50 microg ml(-1)). The potential for uptake of QDs was examined by both fixed and live cell confocal microscopy as well as by flow cytometry over 2 h. Both the COOH 20 nm and 200 nm PBs were clearly and rapidly taken up by the J774.A1 cells, with uptake of 20 nm PBs being relatively quicker and more extensive. Similarly, COOH QDs were clearly taken up by the macrophages. Uptake of NH2 (PEG) QDs was not detectable by live cell imaging however, was observed following 3D reconstruction of fixed cells, as well as by flow cytometry. Cells treated with organic QDs, monitored by live cell imaging, showed only a small amount of uptake in a relatively small number of cells. This uptake was insufficient to be detected by flow cytometry. Imaging of fixed cells was not possible due to a loss in cell integrity related to cytotoxicity. A significant reduction (p<0.05) in the fluorescent intensity in a cell-free environment was found with organic QDs, NH2 (PEG) QDs, 20 nm and 200 nm PBs at pH 4.0 (indicative of an endosome) after 2 h, suggesting reduced stability. No evidence of exocytosis was found over 2 h. These findings confirm that surface coating has a significant influence on the mode of NP interaction with cells, as well as the subsequent consequences of that interaction.
Resumo:
The production by biosynthesis of optically active amino acids and amines satisfies the pharmaceutical industry in its demand for chiral building blocks for the synthesis of various pharmaceuticals. Among several enzymatic methods that allow the synthesis of optically active aminoacids and amines, the use of minotransferase is a promising one due to its broad substrate specificity and no requirement for external cofactor regeneration. The synthesis of chiral compounds by aminotransferases can be done either by asymmetric synthesis starting from keto acids or ketones, and by kinetic resolution starting from racemic aminoacids or amines. The asymmetric synthesis of substituted (S)-aminotetralin, an active pharmaceutical ingredient (API), has shown to have two major factors that contribute to increasing the cost of production. These factors are the raw material cost of biocatalyst used to produce it and product loss during biocatalyst separation. To minimize the cost contribution of biocatalyst and to minimize the loss of product, two routes have been chosen in this research: 1. To engineer the aminotransferase biocatalyst to have greater specific activity, and 2. Improve the engineering of the process by immobilization of biocatalyst in calcium alginate and addition of cosolvents. An (S)-aminotransferase (Mutant CNB03-03) was immobilized, not as purified enzyme but as enzyme within spray dried cells, in calcium alginate beads and used to produce substituted (S)-aminotetralin at 50 °C and pH 7 in experiments where the immobilized biocatalyst was recycled. Initial rate of reaction for cycle 1 (6 hr duration) was determined to be 0.258 mM/min, for cycle 2 (20 hr duration) it decreased by ~50% compared to cycle 1, and for cycle 3 (20 hr duration) it decreased by ~90% compared to cycle 1 (immobilized preparation consisted of 50 mg of spray dried cells per gram of calcium alginate). Conversion to product for each cycle decreased as well, from 100% in cycle 1 (About 50 mM), 80% in cycle 2, and 30% after cycle 3. This mutant was determined to be deactivated at elevated temperatures during the reaction cycle and was not stable enough to allow multiple cycles in its immobilized form. A new mutant aminotransferase was isolated by applying error-prone polymerase chain reaction (PCR) on the gene coding for this enzyme and screening/selection: CNB04-01. This mutant showed a significant improvement in thermostability in comparison to CNB03-03. The new mutant was immobilized and tested under similar reaction conditions. Initial rate remained fairly constant (0.2 mM/min) over four cycles (each cycle with a duration of about 20 hours) with the mutant retaining almost 80% of initial rate in the fourth cycle. The final product concentrations after each cycle did not decrease during recycle experiments. Thermostability of CNB04-01 was much improved compared to CNB03-03. Under the same reaction conditions as stated above, the addition of co-solvents was studied in order to increase substituted tetralone solubility. Toluene and sodium dodecylsulfate (SDS) were used. SDS at 0.01% (w/v) allowed four recycles of the immobilized spray dried cells of CNB04-01, always reaching higher product concentration (80-85 mM) than the system with toluene at 3% (v/v) -70 mM-. The long term activity of immobilized CNB04-01 in a system with SDS 0.01% (w/v) at 50 °C, pH 7 was retained for three cycles (20 to 24 hours each one), reaching always final product concentration between 80-85 mM, but dropping precipitously in the fourth cycle to a final product concentration of 50 mM. Although significant improvement of immobilization on productivity and stability were observed using CNB04-01, another observation demonstrated the limitations of an immobilization strategy on reducing process costs. After analyzing the results of this experiment it was seen that a sudden drop occurred on final product concentration after the third recycle. This was due to product accumulation inside the immobilized preparation. In order to improve the economics of the process, research was focused on developing a free enzyme with an even higher activity, thus reducing raw material cost as well as improving biomass separation. A new enzyme was obtained (CNB05-01) using error-prone PCR and screening using as a template the gene derived from the previous improved enzyme. This mutant was determined to have 1.6 times the initial rate of CNB04-01 and had a higher temperature optimum (55°). This new enzyme would allow reducing enzyme loading in the reaction by five-fold compared to CNB03-03, when using it at concentration of one gram of spray dried cells per liter (completing the reaction after 20-24 hours). Also this mutant would allow reducing process time to 7-8 hours when used at a concentration of 5 grams of spray dried cells per liter compared to 24 hours for CNB03-03, assuming that the observations shown before are scalable. It could be possible to improve the economics of the process by either reducing enzyme concentration or reducing process time, since the production cost of the desired product is primarily a function of both enzyme concentration and process time.
Variability of anti-PF4/heparin antibody results obtained by the rapid testing system ID-H/PF4-PaGIA
Resumo:
BACKGROUND: Recent studies have shown that a low clinical pretest probability may be adequate for excluding heparin-induced thrombocytopenia. However, for patients with intermediate or high pretest probability, laboratory testing is essential for confirming or refuting the diagnosis. Rapid assessment of anti-PF4/heparin-antibodies may assist clinical decision-making. OBJECTIVES: To evaluate the performance of rapid ID-H/PF4-PaGIA. In particular, we verified reproducibility of results between plasma and serum specimens, between fresh and frozen samples, and between different ID-H/PF4-polymer lots (polystyrene beads coated with heparin/PF4-complexes). PATIENTS/METHODS: The samples studied were 1376 plasma and 914 corresponding serum samples from patients investigated for suspected heparin-induced thrombocytopenia between January 2000 and October 2008. Anti-PF4/heparin-antibodies were assessed by ID-H/PF4-PaGIA, commercially available ELISAs and heparin-induced platelet aggregation test. RESULTS: Among 914 paired plasma/serum samples we noted discordant results (negative vs. low-titre positive) in nine instances (1%; 95%CI, 0.4-1.6%). Overall, agreement between titres assessed in plasma vs. serum was highly significant (Spearman correlation coefficient, 0.975; P < 0.0001). Forty-seven samples tested both fresh and after freezing/thawing showed a good agreement, with one discordant positive/negative result (Spearman correlation coefficient, 0.970; P < 0.0001). Among 1376 plasma samples we noted a strikingly variable incidence of false negative results (none - 82%; 95%CI, 66-98%), depending on the employed ID-H/PF4-polymer lot. Faulty lots can be recognized by titrating commercial positive controls and stored samples of HIT-patients. CONCLUSION: Laboratories performing the assay should implement stringent internal quality controls in order to recognize potentially faulty ID-H/PF4-polymer lots, thus avoiding false negative results.