985 resultados para Automatic selection
Resumo:
The commercialization of aerial image processing is highly dependent on the platforms such as UAVs (Unmanned Aerial Vehicles). However, the lack of an automated UAV forced landing site detection system has been identified as one of the main impediments to allow UAV flight over populated areas in civilian airspace. This article proposes a UAV forced landing site detection system that is based on machine learning approaches including the Gaussian Mixture Model and the Support Vector Machine. A range of learning parameters are analysed including the number of Guassian mixtures, support vector kernels including linear, radial basis function Kernel (RBF) and polynormial kernel (poly), and the order of RBF kernel and polynormial kernel. Moreover, a modified footprint operator is employed during feature extraction to better describe the geometric characteristics of the local area surrounding a pixel. The performance of the presented system is compared to a baseline UAV forced landing site detection system which uses edge features and an Artificial Neural Network (ANN) region type classifier. Experiments conducted on aerial image datasets captured over typical urban environments reveal improved landing site detection can be achieved with an SVM classifier with an RBF kernel using a combination of colour and texture features. Compared to the baseline system, the proposed system provides significant improvement in term of the chance to detect a safe landing area, and the performance is more stable than the baseline in the presence of changes to the UAV altitude.
Resumo:
It is commonplace to use digital video cameras in robotic applications. These cameras have built-in exposure control but they do not have any knowledge of the environment, the lens being used, the important areas of the image and do not always produce optimal image exposure. Therefore, it is desirable and often necessary to control the exposure off the camera. In this paper we present a scheme for exposure control which enables the user application to determine the area of interest. The proposed scheme introduces an intermediate transparent layer between the camera and the user application which combines the information from these for optimal exposure production. We present results from indoor and outdoor scenarios using directional and fish-eye lenses showing the performance and advantages of this framework.
Resumo:
It’s commonly assumed that psychiatric violence is motivated by delusions, but here the concept of a reversed impetus is explored, to understand whether delusions are formed as ad-hoc or post-hoc rationalizations of behaviour or in advance of the actus reus. The reflexive violence model proposes that perceptual stimuli has motivational power and this may trigger unwanted actions and hallucinations. The model is based on the theory of ecological perception, where opportunities enabled by an object are cues to act. As an apple triggers a desire to eat, a gun triggers a desire to shoot. These affordances (as they are called) are part of the perceptual apparatus, they allow the direct recognition of objects – and in emergencies they enable the fastest possible reactions. Even under normal circumstances, the presence of a weapon will trigger inhibited violent impulses. The presence of a victim will also, but under normal circumstances, these affordances don’t become violent because negative action impulses are totally inhibited, whereas in psychotic illness, negative action impulses are treated as emergencies and bypass frontal inhibitory circuits. What would have been object recognition becomes a blind automatic action. A range of mental illnesses can cause inhibition to be bypassed. At its most innocuous, this causes both simple hallucinations (where the motivational power of an object is misattributed). But ecological perception may have the power to trigger serious violence also –a kind that’s devoid of motives or planning and is often shrouded in amnesia or post-rational delusions.
Resumo:
In this paper we present a new method for performing Bayesian parameter inference and model choice for low count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel pseudo-marginal algorithm, which we refer to as alive SMC^2. The advantages of this approach over competing approaches is that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series and the cumulative number of poison disease cases in mule deer.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
Robustness to variations in environmental conditions and camera viewpoint is essential for long-term place recognition, navigation and SLAM. Existing systems typically solve either of these problems, but invariance to both remains a challenge. This paper presents a training-free approach to lateral viewpoint- and condition-invariant, vision-based place recognition. Our successive frame patch-tracking technique infers average scene depth along traverses and automatically rescales views of the same place at different depths to increase their similarity. We combine our system with the condition-invariant SMART algorithm and demonstrate place recognition between day and night, across entire 4-lane-plus-median-strip roads, where current algorithms fail.
Resumo:
Despite extensive literature on female mate choice, empirical evidence on women’s mating preferences in the search for a sperm donor is scarce, even though this search, by isolating a male’s genetic impact on offspring from other factors like paternal investment, offers a naturally ”controlled” research setting. In this paper, we work to fill this void by examining the rapidly growing online sperm donor market, which is raising new challenges by offering women novel ways to seek out donor sperm. We not only identify individual factors that influence women’s mating preferences but find strong support for the proposition that behavioural traits (inner values) are more important in these choices than physical appearance (exterior values). We also report evidence that physical factors matter more than resources or other external cues of material success, perhaps because the relevance of good character in donor selection is part of a female psychological adaptation throughout evolutionary history. The lack of evidence on a preference for material resources, on the other hand, may indicate the ability of peer socialization and better access to resources to rapidly shape the female decision process. Overall, the paper makes useful contributions to both the literature on human behaviour and that on decision-making in extreme and highly important situations.
Resumo:
This research identifies the commuting mode choice behaviour of 3537 adults living in different types of transit oriented development (TOD) in Brisbane by disentangling the effects of their “evil twin” transit adjacent developments (TADs), and by also controlling for residential self-selection, travel attitudes and preferences, and socio-demographic effects. A TwoStep cluster analysis was conducted to identify the natural groupings of respondents’ living environment based on six built environment indicators. The analysis resulted in five types of neighbourhoods: urban TODs, activity centre TODs, potential TODs, TADs, and traditional suburbs. HABITAT survey data were used to derive the commute mode choice behaviour of people living in these neighbourhoods. In addition, statements reflecting both respondents’ travel attitudes and living preferences were also collected as part of the survey. Factor analyses were conducted based on these statements and these derived factors were then used to control for residential self-selection. Four binary logistic regression models were estimated, one for each of the travel modes used (e.g. public transport, active transport, less sustainable transport such as the car/taxi, and other), to differentiate between the commuting behaviour of people living in the five types of neighbourhoods. The findings verify that urban TODs enhance the use of public transport and reduce car usage. No significant difference was found in the commuting behaviour between respondents living in traditional suburbs and TADs. The results confirm the hypothesis that TADs are the “evil twin” of TODs. The data indicates that TADs and the mode choices of residents in these neighbourhoods is a missed transport policy opportunity. Further policy efforts are required for a successive transition of TADs into TODs in order to realise the full benefits of these. TOD policy should also be integrated with context specific TOD design principles.
Resumo:
In Lessbrook Pty Ltd (in liq) v Whap; Stephen; Bowie; Kepa & Kepa [2014] QCA 63 the Queensland Court of Appeal dealt with significant questions of general application relating to the appointment of assessors to conduct an assessment of costs under the Uniform Civil Procedure Rules 1999 (Qld) (UCPR).
Resumo:
Objective This paper presents an automatic active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort, and (2) the robustness of incremental active learning framework across different selection criteria and datasets is determined. Materials and methods The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional Random Fields as the supervised method, and least confidence and information density as two selection criteria for active learning framework were used. The effect of incremental learning vs. standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. Two clinical datasets were used for evaluation: the i2b2/VA 2010 NLP challenge and the ShARe/CLEF 2013 eHealth Evaluation Lab. Results The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared to the Random sampling baseline, the saving is at least doubled. Discussion Incremental active learning guarantees robustness across all selection criteria and datasets. The reduction of annotation effort is always above random sampling and longest sequence baselines. Conclusion Incremental active learning is a promising approach for building effective and robust medical concept extraction models, while significantly reducing the burden of manual annotation.
Resumo:
Purpose Director selection is an important yet under-researched topic. The purpose of this paper is to contribute to extant literature by gaining a greater understanding into how and why new board members are recruited. Design/methodology/approach This exploratory study uses in-depth interviews with Australian non-executive directors to identify what selection criteria are deemed most important when selecting new director candidates and how selection practices vary between organisations. Findings The findings indicate that appointments to the board are based on two key attributes: first, the candidates’ ability to contribute complementary skills and second, the candidates’ ability to work well with the existing board. Despite commonality in these broad criteria, board selection approaches vary considerably between organisations. As a result, some boards do not adequately assess both criteria when appointing a new director hence increasing the chance of a mis-fit between the position and the appointed director. Research limitations/implications The study highlights the importance of both individual technical capabilities and social compatibility in director selections. The authors introduce a new perspective through which future research may consider director selection: fit. Originality/value The in-depth analysis of the director selection process highlights some less obvious and more nuanced issues surrounding directors’ appointment to the board. Recurrent patterns indicate the need for both technical and social considerations. Hence the study is a first step in synthesising the current literature and illustrates the need for a multi-theoretical approach in future director selection research.
Resumo:
Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.
Resumo:
Spoken word production is assumed to involve stages of processing in which activation spreads through layers of units comprising lexical-conceptual knowledge and their corresponding phonological word forms. Using high-field (4T) functional magnetic resonance imagine (fMRI), we assessed whether the relationship between these stages is strictly serial or involves cascaded-interactive processing, and whether central (decision/control) processing mechanisms are involved in lexical selection. Participants performed the competitor priming paradigm in which distractor words, named from a definition and semantically related to a subsequently presented target picture, slow picture-naming latency compared to that with unrelated words. The paradigm intersperses two trials between the definition and the picture to be named, temporally separating activation in the word perception and production networks. Priming semantic competitors of target picture names significantly increased activation in the left posterior temporal cortex, and to a lesser extent the left middle temporal cortex, consistent with the predictions of cascaded-interactive models of lexical access. In addition, extensive activation was detected in the anterior cingulate and pars orbitalis of the inferior frontal gyrus. The findings indicate that lexical selection during competitor priming is biased by top-down mechanisms to reverse associations between primed distractor words and target pictures to select words that meet the current goal of speech.
Resumo:
To understand factors that affect brain connectivity and integrity, it is beneficial to automatically cluster white matter (WM) fibers into anatomically recognizable tracts. Whole brain tractography, based on diffusion-weighted MRI, generates vast sets of fibers throughout the brain; clustering them into consistent and recognizable bundles can be difficult as there are wide individual variations in the trajectory and shape of WM pathways. Here we introduce a novel automated tract clustering algorithm based on label fusion - a concept from traditional intensity-based segmentation. Streamline tractography generates many incorrect fibers, so our top-down approach extracts tracts consistent with known anatomy, by mapping multiple hand-labeled atlases into a new dataset. We fuse clustering results from different atlases, using a mean distance fusion scheme. We reliably extracted the major tracts from 105-gradient high angular resolution diffusion images (HARDI) of 198 young normal twins. To compute population statistics, we use a pointwise correspondence method to match, compare, and average WM tracts across subjects. We illustrate our method in a genetic study of white matter tract heritability in twins.
Resumo:
Automatic labeling of white matter fibres in diffusion-weighted brain MRI is vital for comparing brain integrity and connectivity across populations, but is challenging. Whole brain tractography generates a vast set of fibres throughout the brain, but it is hard to cluster them into anatomically meaningful tracts, due to wide individual variations in the trajectory and shape of white matter pathways. We propose a novel automatic tract labeling algorithm that fuses information from tractography and multiple hand-labeled fibre tract atlases. As streamline tractography can generate a large number of false positive fibres, we developed a top-down approach to extract tracts consistent with known anatomy, based on a distance metric to multiple hand-labeled atlases. Clustering results from different atlases were fused, using a multi-stage fusion scheme. Our "label fusion" method reliably extracted the major tracts from 105-gradient HARDI scans of 100 young normal adults. © 2012 Springer-Verlag.