981 resultados para Auriferous mineralization
Resumo:
Cleavage of the carbon-phosphorus bond of the xenobiotic phosphonoacetate by phosphonoacetate hydrolase: represents a novel route for the microbial metabolism of organophosphonates, and is unique in that it: is substrate-inducible and its expression is independent of the phosphate status of the cell. The enzyme has previously only been demonstrated in cell extracts of Pseudomonas fluorescens 23F. Phosphonoacetate hydrolase activity is now reported in extracts of environmental Curtobacterium sp. and Pseudomonas sp. isolates capable of the phosphate-insensitive mineralization of phosphonoacetate as the sole source of carbon, energy and phosphorus at concentrations up to 40 mmol l(-1) and 100 mmol l(-1), respectively. The enzymes in both strains were similarly inducible by phosphonoacetate and had a unique specificity ibr this substrate. However, they differed significantly from each other, and from the previously described Ps. fluorescens 23F enzyme, in respect of their apparent molecular masses, temperature optima, thermostability, sensitivity to inhibition by chelating agents and by structural analogues of phosphonoacetate, and in their affinities for the substrate.
Resumo:
Umbilical cord blood-derived endothelial colony-forming cells (UCB-ECFC) show utility in neovascularization, but their contribution to osteogenesis has not been defined. Cocultures of UCB-ECFC with human fetal-mesenchymal stem cells (hfMSC) resulted in earlier induction of alkaline phosphatase (ALP) (Day 7 vs. 10) and increased mineralization (1.9×; p <.001) compared to hfMSC monocultures. This effect was mediated through soluble factors in ECFC-conditioned media, leading to 1.8-2.2× higher ALP levels and a 1.4-1.5× increase in calcium deposition (p <.01) in a dose-dependent manner. Transcriptomic and protein array studies demonstrated high basal levels of osteogenic (BMPs and TGF-ßs) and angiogenic (VEGF and angiopoietins) regulators. Comparison of defined UCB and adult peripheral blood ECFC showed higher osteogenic and angiogenic gene expression in UCB-ECFC. Subcutaneous implantation of UCB-ECFC with hfMSC in immunodeficient mice resulted in the formation of chimeric human vessels, with a 2.2-fold increase in host neovascularization compared to hfMSC-only implants (p = .001). We conclude that this study shows that UCB-ECFC have potential in therapeutic angiogenesis and osteogenic applications in conjunction with MSC. We speculate that UCB-ECFC play an important role in skeletal and vascular development during perinatal development but less so in later life when expression of key osteogenesis and angiogenesis genes in ECFC is lower.
Resumo:
Mineral exploration programmes around the world use data from remote sensing, geophysics and direct sampling. On a regional scale, the combination of airborne geophysics and ground-based geochemical sampling can aid geological mapping and economic minerals exploration. The fact that airborne geophysical and traditional soil-sampling data are generated at different spatial resolutions means that they are not immediately comparable due to their different sampling density. Several geostatistical techniques, including indicator cokriging and collocated cokriging, can be used to integrate different types of data into a geostatistical model. With increasing numbers of variables the inference of the cross-covariance model required for cokriging can be demanding in terms of effort and computational time. In this paper a Gaussian-based Bayesian updating approach is applied to integrate airborne radiometric data and ground-sampled geochemical soil data to maximise information generated from the soil survey, to enable more accurate geological interpretation for the exploration and development of natural resources. The Bayesian updating technique decomposes the collocated estimate into a production of two models: prior and likelihood models. The prior model is built from primary information and the likelihood model is built from secondary information. The prior model is then updated with the likelihood model to build the final model. The approach allows multiple secondary variables to be simultaneously integrated into the mapping of the primary variable. The Bayesian updating approach is demonstrated using a case study from Northern Ireland where the history of mineral prospecting for precious and base metals dates from the 18th century. Vein-hosted, strata-bound and volcanogenic occurrences of mineralisation are found. The geostatistical technique was used to improve the resolution of soil geochemistry, collected one sample per 2 km2, by integrating more closely measured airborne geophysical data from the GSNI Tellus Survey, measured over a footprint of 65 x 200 m. The directly measured geochemistry data were considered as primary data in the Bayesian approach and the airborne radiometric data were used as secondary data. The approach produced more detailed updated maps and in particular maximized information on mapped estimates of zinc, copper and lead. Greater delineation of an elongated northwest/southeast trending zone in the updated maps strengthened the potential to investigate stratabound base metal deposits.
Resumo:
TiO2 photocatalysis has been used to destroy microcystin-LR in aqueous solution. The destruction of this toxin was monitored by HPLC, and the disappearance was accompanied by the appearance of seven UV detectable compounds. Spectral analysis revealed that some of these compounds retained spectra similar to the parent compound suggesting that the Adda moiety, thought to be responsible for the characteristic spectrum, remained intact whereas the spectra of some of the other products was more radically altered. Six of the seven observed reaction products did not appear to undergo further degradation during prolonged photocatalysis (100 min). The degree to which microcystin-LR was mineralized by photocatalytic oxidation was determined. Results indicated that less than 10% mineralization occurred. Mass spectral analysis of the photocatalyzed microcystin-LR allowed tentative characterization of the reaction process and products. Reduction in toxicity due to the photocatalytic oxidation was evaluated using an invertebrate bioassay, which demonstrated that the disappearance of microcystin-LR was paralleled by a reduction in toxicity. These findings suggest that photocatalytic destruction of microcystins may be a suitable method for the removal of these potentially hazardous compounds from drinking water.
Resumo:
Chitons (class Polyplacophora) are benthic grazing molluscs with an eight-part aragonitic shell armature. The radula, a serial tooth ribbon that extends internally more than half the length of the body, is mineralised on the active feeding teeth with iron magnetite apparently as an adaptation to constant grazing on rocky substrates. As the anterior feeding teeth are eroded they are shed and replaced with a new row. The efficient mineralisation and function of the radula could hypothetically be affected by changing oceans in two ways: changes in seawater chemistry (pH and pCO(2)) may impact the biomineralisation pathway, potentially leading to a weaker or altered density of the feeding teeth; rising temperatures could increase activity levels in these ectothermic animals, and higher feeding rates could increase wear on the feeding teeth beyond the animals' ability to synthesise, mineralise, and replace radular rows. We therefore examined the effects of pH and temperature on growth and integrity in the radula of the chiton Leptochiton asellus. Our experiment implemented three temperature (similar to 10, 15, 20 degrees C) and two pCO(2) treatments (similar to 400 mu atm, pH 8.0; similar to 2000 mu atm, pH 7.5) for six treatment groups. Animals (n = 50) were acclimated to the treatment conditions for a period of 4 weeks. This is sufficient time for growth of ca. 7-9 new tooth rows or 20% turnover of the mineralised portion. There was no significant difference in the number of new (non-mineralised) teeth or total tooth row count in any treatment. Examination of the radulae via SEM revealed no differences in microwear or breakage on the feeding cusps correlating to treatment groups. The shell valves also showed no signs of dissolution. As a lineage, chitons have survived repeated shifts in Earth's climate through geological time, and at least their radulae may be robust to future perturbations.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are an important class of persistent organic pollutants (POPs) in the environment and accumulate in forest soils. These soils are often dominated by ectomycorrhizal (EcM) roots, but little is known about how EcM fungi degrade PAHs, or the overall effect of field colonized EcM roots on the fate of PAHs. The ability of eight EcM fungi to degrade PAHs in liquid culture spiked with 14C labelled PAHs was investigated. Microcosms were used to determine the impact of naturally colonized mycorrhizal pine seedlings on PAH mineralization and volatilization. Only two EcM fungi (Thelephora terrestris and Laccaria laccata) degraded at least one PAH and none were able to mineralize the PAHs in pure culture. Where degradation occurred, the compounds were only mono-oxygenated. EcM pine seedlings did not alter naphthalene mineralization or volatilization but retarded fluorene mineralization by 35% compared with unplanted, ectomycorrhizosphere soil inoculated, microcosms. The EcM fungi possessed limited PAH degrading abilities, which may explain why EcM dominated microcosms retarded fluorene mineralization. This observation is considered in relation to the 'Gadgil-effect', where retarded litter decomposition has been observed in the presence of EcM roots. © New Phytologist (2004).
Resumo:
Interaction of organic xenobiotics with soil water-soluble humic material (WSHM) may influence their environmental fate and bioavailability. We utilized bacterial assays (lux-based toxicity and mineralization by Burkholderia sp. RASC) to assess temporal changes in the bioavailability of [14C]-2,4-dichlorophenol (2,4-DCP) in soil water extracts (29.5 μg mL-1 2,4-DCP; 840.2 μg mL-1 organic carbon). HPLC determined and bioavailable concentrations were compared. Gel permeation chromatography (GPC) was used to confirm the association of a fraction (>50%) of [14C]-2,4-DCP with WSHM. Subtle differences in parameters describing 2,4-DCP mineralization curves were recorded for different soil-2,4-DCP contact times. Problems regarding the interpretation of mineralization data when assessing the bioavailability of toxic compounds are discussed. The lux-bioassay revealed a time-dependent reduction in 2,4-DCP bioavailability: after 7 d, less than 20% was bioavailable. However, GPC showed no quantitative difference in the amount of WSHM-associated 2,4-DCP over this time. These data suggest qualitative changes in the nature of the 2,4-DCP-WSHM association and that associated 2,4-DCP may exert a toxic effect. Although GPC distinguished between free- and WSHM-associated 2,4-DCP, it did not resolve the temporal shift in bioavailability revealed by the lux biosensor. These results stress that assessment of risk posed by chemicals must be considered using appropriate biological assays.
Resumo:
The potential of ectomycorrhizal (ECM) associations to facilitate clean-up of soil contaminated with persistent organic pollutants (POPs) is considered. Most ECM fungi screened for degradation of POPs (e.g. polyhalogenated biphenyls, polyaromatic hydrocarbons, chlorinated phenols, and pesticides) are able to transform these compounds. Mineralization of toluene, tetrachloroethylene and 2,4-dichlorophenol in intact ECM-association rhizospheres has also been demonstrated. We review and consider the likely mechanisms by which ECM fungi can transform pollutants, the extent to which these capabilities may be utilized practically in bioremediation, along with the potential advantages and disadvantages of using ECM associations in bioremediation. (C) 2000 Elsevier Science Ltd.
Resumo:
Biodegradation of the model pollutant, 2,4-dichlorophenol (2,4-DCP) by Burkholderia sp. RASC c2, in contaminated soil was assessed by combining chemical analysis with a toxicity test using Escherichia coli HB101 pUCD607. E. coli HB101 pUCD607 was previously marked with luxCDABE genes, encoding bacterial bioluminescence and was used as an alternative to Microtox. Mineralization of 14C-2,4-DCP (196.2 μg g-1 dry wt) in soil occurred rapidly after a 24 h lag. Correspondingly, 2,4-DCP concentrations in soil and soil water extracts decreased with time and concentrations in the latter were at background levels (<0.12 μg mL-1) after day 2. Toxicity of soil water extracts to the lux-based biosensor also decreased with time. Mean light output of E. coli was stimulated by ~1.5 X control values in soil water extracts when concentrations of 2,4-DCP were approaching the limit of detection by HPLC but returned to values equivalent to those of controls when soil water 2,4-DCP concentrations were below the detection limit. No mineralization or microbial growth was detected in noninoculated microcosms. 2,4-DCP concentration in sterile controls decreased significantly with time as did toxicity to E. coli Lux-based E. coli was a sensitive biosensor of 2,4-DCP toxicity during biodegradation and results complemented chemical analysis.
Response of soil microbial biomass to 1,2-dichlorobenzene addition in the presence of plant residues
Resumo:
The impact of 1,2-dichlorobenzene on soil microbial biomass in the presence and absence of fresh plant residues (roots) was investigated by assaying total vital bacterial counts, vital fungel hyphal length, total culturable bacterial counts, and culturable fluorescent pseudomonads. Diversity of the fluorescent pseudomonads was investigated using fatty acid methyl ester (FAME) characterization in conjunction with metabolic profiling of the sampled culturable community (Biolog). Mineralization of [14C]1,2- dichlorobenzene was also assayed. Addition of fresh roots stimulated 1,2- dichlorobenzene mineralization by over 100%, with nearly 20% of the label mineralized in root-amended treatments by the termination of the experiment. Presence of roots also buffered any impacts of 1,2-dichlorobenzene on microbial numbers. In the absence of roots, 1,2-dichlorobenzene greatly stimulated total culturable bacteria and culturable pseudomonads in a concentration-dependent manner. 1,2-Dichlorobenzene, up to concentrations of 50 μg/g soil dry weight had little or no deleterious effects on microbial counts. The phenotypic diversity of the fluorescent pseudomonad population was unaffected by the treatments, even though fluorescent pseudomonad numbers were greatly stimulated by both roots and 1,2-dichlorobenzene. The presence of roots had no detectable impact on the bacterial community composition. No phenotypic shifts in the natural population were required to benefit from the presence of roots and 1,2-dichlorobenzene. The metabolic capacity of the culturable bacterial community was altered in the presence of roots but not in the presence of 1,2-dichlorobenzene. It is argued that the increased microbial biomass and shifts in metabolic capacity of the microbial biomass are responsible for enhanced degradation of 1,2-dichlorobenzene in the presence of decaying plant roots.
Resumo:
Inland waters are of global biogeochemical importance receiving carbon inputs of ~ 4.8 Pg C y-1. Of this 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One important aspect is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use potential as organic carbon (C) and nitrogen (N) sources. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and streamwater sampled from the Oberer Seebach stream (Austria), tracing assimilation and mineralization of 13C and 15N labels from mineral-sorbed and dissolved amino acids.Here we present data on the effects of organo-mineral sorption upon amino acid mineralization and its C:N stoichiometry. Organo-mineral sorption had a significant effect upon microbial activity, restricting C and N mineralization by both the biofilm and streamwater treatments. Distinct differences in community response were observed, with both dissolved and mineral-stabilized amino acids playing an enhanced role in the metabolism of the streamwater microbial community. Mineral-sorption of amino acids differentially affected C & N mineralization and reduced the C:N ratio of the dissolved amino acid pool. The present study demonstrates that organo-mineral complexes restrict microbial degradation of OM and may, consequently, alter the carbon and nitrogen cycling dynamics within aquatic ecosystems.
Resumo:
Inland waters are of global biogeochemical importance. They receive carbon inputs of ~ 4.8 Pg C/ y of which, 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One aspect of this is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use as carbon (C) and nitrogen (N) sources within aquatic systems. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We experimentally tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and water sampled from the Oberer Seebach stream (Austria). Each incubation experienced a 16:8 light:dark regime, with metabolism monitored via changes in oxygen concentrations between photoperiods. The relative fate of the organo-mineral particles was quantified by tracing the mineralization of the 13C and 15N labels and their incorporation into microbial biomass. Here we present the initial results of 13C-label mineralization, incorporation and retention within dissolved organic carbon pool. The results indicate that 514 (± 219) μmol/ mmol of the 13:15N labeled free amino acids were mineralized over the 7-day incubations. By contrast, 186 (± 97) μmol/ mmol of the mineral-sorbed amino acids were mineralized over a similar period. Thus, organo-mineral complexation reduced amino acid mineralization by ~ 60 %, with no differences observed between the streamwater and biofilm assemblages. Throughout the incubations, biofilms were observed to leach dissolved organic carbon (DOC). However, within the streamwater assemblage the presence of both organo-mineral particles and kaolin particles was associated with significant DOC removal (-1.7 % and -7.5 % respectively). Consequently, the study demonstrates that mineral and organo-mineral particles can limit the availability of DOC in aquatic systems, providing nucleation sites for flocculation and fresh mineral surfaces, which facilitate OM-sorption. The formation of these organo-mineral particles subsequently restricts microbial OM degradation, potentially altering the transport and facilitating the burial of OM within streams.
Resumo:
Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass® (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 collagen-BG ratio) produced through needle gauge numbers 8G (3.4 mm diameter and 6 wt% CFD) and 14G (1.6 mm diameter and 14 wt% CFD) was investigated. Second harmonic generation (SHG) imaging of as-made gels revealed an increase in collagen fibril alignment with needle gauge number. In vitro mineralization of IDC-BG gels was confirmed where carbonated hydroxyapatite was detected as early as day 1 in simulated body fluid, which progressively increased up to day 14. In vivo mineralization of, and host response to, acellular IDC and IDC-BG gel scaffolds were further investigated following subcutaneous injection in adult rats. Mineralization, neovascularization and cell infiltration into the scaffolds was enhanced by the addition of BG and at day 21 post injection, there was evidence of remodelling of granulation tissue into woven bone-like tissue in IDC-BG. SHG imaging of explanted scaffolds indicated collagen fibril remodelling through cell infiltration and mineralization over time. In sum, the results suggest that IDC-BG hybrid gels have osteoinductive properties and potentially offer a novel therapeutic approach for procedures requiring the injectable delivery of a malleable and dynamic bone graft that mineralizes under physiological conditions
Resumo:
Os cimentos ósseos à base de PMMA para aplicações em artroplastia da anca apresentam como grande limitação o facto do seu constituinte principal ser um elemento bioinerte o que leva à falta de integração entre as interfaces cimento ósseo/tecido ósseo, comprometendo assim o desempenho mecânico da prótese ortopédica ao longo do tempo. Esta dissertação tem como objetivo principal a preparação de novas formulações de cimentos ósseos com a capacidade de estabelecer interações com os tecidos vivos circundantes. De modo a melhorar a bioatividade do sistema e facilitar a sua osseointegração, os cimentos ósseos comerciais foram reforçados com cargas significativas de HA. No entanto o recurso a elevadas cargas de HA (~60% m/m) no cimento ósseo promove debilidades do ponto de vista estrutural, levando a uma baixa resistência mecânica do material final. No sentido de ultrapassar esta limitação, foram inseridas nanoestruturas de carbono (GO ou CNTs) em baixas percentagens na matriz polimérica por forma a maximizar a sua performance mecânica através da perfeita integração de todos os componentes. A primeira fase deste trabalho consistiu no desenvolvimento de metodologias que permitissem a síntese de GO através da exfoliação química da grafite em solução aquosa. Os resultados obtidos demonstraram a obtenção de folhas de GO em larga escala e com número de camadas uniforme. A funcionalização orgânica superficial via ATRP do GO obtido, com cadeias de PMMA possibilitou o desenvolvimento de novos materiais nanocompósitos, no entanto alguns fatores de natureza tecnológica inviabilizaram o seu uso como agente de reforço na matriz idealizada. O desenvolvimento de novas formulações de cimentos ósseos consistiu numa matriz de PMMA/HA (1:2 (m/m)) reforçada com pequenas percentagens de GO ou CNTs (0,01, 0,1, 0,5 e 1,0% m/m). A síntese destes materiais nanocompósitos resultou da combinação de diversas técnicas: ultrassons, granulação por congelamento e liofilização. A análise estrutural dos nanocompósitos obtidos demonstrou a eficácia da metodologia desenvolvida na homogeneização de todos os elementos do sistema. Os estudos desenvolvidos após a conformação e caracterização estrutural dos novos materiais nanocompósitos permitiram verificar que as nanoestruturas de carbono apresentavam efeitos adversos na polimerização via radicalar do PMMA. A análise da fração orgânica permitiu verificar a presença de espécies oligoméricas o que reduziu significativamente o comportamento mecânico dos nanocompósitos. Através do estudo do aumento da concentração das espécies radicalares iniciais foi possível suplantar este problema e tirar o máximo rendimento dos agentes de reforço, tendo-se destacado os nanocompósitos reforçados com GO. A validação do ponto de vista mecânico das novas formulações de cimentos ósseos recaiu sobre o procedimento descrito na norma europeia ISO 5833 de 2002 – Implantes para cirurgia – cimentos acrílicos, tendo sido realizados os testes de compressão e de flexão. A avaliação biológica do comportamento dos cimentos ósseos assentou em duas abordagens complementares: estudos de mineralização em SBF e estudos de biocompatibilidade em meios celulares. Após a incubação das amostras em SBF ficou demonstrada a excelente capacidade para promoverem a integração de uma camada apatítica. Através de estudos celulares com Fibroblastos L929 e Osteoblastos Saos-2, nos quais foram avaliados a proliferação celular, viabilidade celular, espécies reativas de oxigénio, apoptose e morfologia celular, foi possível verificar bons níveis de biocompatibilidade para os materiais devolvidos.
Resumo:
The development of mining activities over thousands of years in the region of Aljustrel is nowadays visible as a vast area of ore tailings, slag and host rocks of sulphides mineralization. The generation of acidic waters by the alteration of pyritic minerals - Acid Mine Drainage (AMD) - causes a significant impact on the river system both in the south of the village (Rib ª. Água Forte) and in the north of it (Rib ª. Água Azeda and Barranco do Farrobo), which is reflected in extremely low pH values (< 3) and high concentrations of As, Cd, Cu, Fe, Mn, Pb, Zn and sulphates. This study aimed to assess the environmental impacts extent, integrating geochemical (surface waters and stream sediments) and biological (diatoms) parameters. Three groups of sites were defined, based on sediments and water analysis, which integration with diatom data showed the same association of groups: Group 1- impacted, with acidic pH (1.9-5.1), high metal contents (0.4-1975 mg L-1) and Fe-Mg-sulphate waters, being metals more bioavailable in waters in cationic form (Me2+); mineralogically the sediments were characterized by phyllosilicates and sulphates/oxy-hydroxysulphate phases, easily solubilized, retaining a high amount of metals when precipitated; dominant taxon was Pinnularia aljustrelica (a new species); Group 2- slightly impacted, weak acid to neutral pH (5.0-6.8), metal contents not so high (0.2-25 mg L-1) and Fe-Mg-sulphate to Mg-chloride waters; dominant taxa were Brachysira neglectissima and Achnanthidium minutissimum; Group 3- unimpacted, alkaline pH (7.0-8.4), low metal contents (0-7 mg L-1) with Mg-chloride waters. In this group, metals were associated to the primary phases (e.g. sulphides), not so easily available; the existence of high chloride contents explained the presence of typical taxa of brackish/marine (e.g. Entomoneis paludosa) waters. Taxonomical aspects of the diatoms were studied (discovery of a new species: Pinnularia aljustrelica Luis, Almeida et Ector sp. nov.), as well as morphometric (size decrease of diatoms valves, as well as the appearance of deformed valves of Eunotia exigua in Group 1 and A. minutissimum in Group 2) and physiological (effective to assess the effects of metals/acidity in the photosynthetic efficiency through PAM Fluorometry) aspects. A study was carried out in an artificial river system (microcosm) that aimed to mimic Aljustrel’s extreme conditions in controlled laboratory conditions. The chronic effects of Fe, SO42- and acidity in field biofilms, inoculated in the artificial rivers, were evaluated as well as their contribution to the communities’ tolerance to metal toxicity, through acute tests with two metals (Cu and Zn). In general, the effects caused by low pH values and high concentrations of Fe and SO42- were reflected at the community level by the decrease in diversity, the predominance of acidophilic species, the decrease in photosynthetic efficiency and the increase of enzymatic (e.g. catalase, superoxide dismutase) and non-enzymatic activities (e.g. total glutathione and total phytochelatins). However, it was possible to verify that acidity performed a protective effect in the communities, upon Cu and Zn addition. A comparative study between Aljustrel mining area and New Brunswick mining area was carried out, both with similar mining and geological conditions, reflected in similar diatom communities in both mines, but in very different geographic and climatic areas.