980 resultados para Attentional visual fields
Resumo:
The Yang-Mills-Higgs field generalizes the Yang-Mills field. The authors establish the local existence and uniqueness of the weak solution to the heat flow for the Yang-Mills-Higgs field in a vector bundle over a compact Riemannian 4-manifold, and show that the weak solution is gauge-equivalent to a smooth solution and there are at most finite singularities at the maximum existing time.
Resumo:
The response of a two-level atom in a strong polychromatic field composed of a large number of equidistant frequency components is investigated. We calculate numerically, as well as analytically,:the stationary population inversion and show that the saturation of the atomic transition strongly depends on whether or not there is a central (resonant) frequency component in the driving field. We find that, in the presence of the central component, the atom can remain in the ground state even for a strong Rabi frequency of the driving field. In addition, we find that the inversion is sensitive to the relative phase between the frequency components. When the central component is suppressed, the atomic transition saturates with the Rabi frequency independent of the relative phase.
Resumo:
In the non-color-word Stroop task, university students' response latencies were longer for low-frequency than for higher frequency target words. Visual identity primes facilitated color naming in groups reading the prime silently or processing it semantically (Experiment 1) but did not when participants generated a rhyme of the prime (Experiment 3). With auditory identity primes, generating an associate or a rhyme of the prime produced interference (Experiments 2 and 3). Color-naming latencies were longer for nonwords than for words (Experiment 4). There was a small long-term repetition benefit in color naming for low-frequency words that had been presented in the lexical decision task (Experiment 5). Facilitation of word recognition speeds color naming except when phonological activation of the base word increases response competition.
Resumo:
While multimedia data, image data in particular, is an integral part of most websites and web documents, our quest for information so far is still restricted to text based search. To explore the World Wide Web more effectively, especially its rich repository of truly multimedia information, we are facing a number of challenging problems. Firstly, we face the ambiguous and highly subjective nature of defining image semantics and similarity. Secondly, multimedia data could come from highly diversified sources, as a result of automatic image capturing and generation processes. Finally, multimedia information exists in decentralised sources over the Web, making it difficult to use conventional content-based image retrieval (CBIR) techniques for effective and efficient search. In this special issue, we present a collection of five papers on visual and multimedia information management and retrieval topics, addressing some aspects of these challenges. These papers have been selected from the conference proceedings (Kluwer Academic Publishers, ISBN: 1-4020- 7060-8) of the Sixth IFIP 2.6 Working Conference on Visual Database Systems (VDB6), held in Brisbane, Australia, on 29–31 May 2002.
Resumo:
The colors of 51 species of Hawaiian reef fish have been measured using a spectrometer and therefore can be described in objective terms that are not influenced by the human visual experience. In common with other known reef fish populations, the colors of Hawaiian reef fish occupy spectral positions from 300-800nm; yellow or orange with blue, yellow with black, and black with white are the most frequently combined colors; and there is no link between possession of ultraviolet (UV) reflectance and UV visual sensitivity or the potential for UV visual sensitivity. In contrast to other reef systems, blue, yellow, and orange appear more frequently in Hawaiian reef fish. Based on spectral quality of reflections from fish skin, trends in fish colors can be seen that are indicative of both visually driven selective pressures and chemical or physical constraints on the design of colors. UV-reflecting colors can function as semiprivate communication signals. White or yellow with black form highly contrasting patterns that transmit well through clear water. Labroid fishes display uniquely complex colors but lack the ability to see the UV component that is common in their pigments. Step-shaped spectral curves are usually long-wavelength colors such as yellow or red, and colors with a peak-shaped spectral curves are green, blue, violet, and UV.
Resumo:
Fear relevance, the potential of a stimulus to become quickly associated with fear, is a characteristic assumed to have an evolutionary basis and to result in preferential processing. Previous research has shown that fear relevant stimuli share a number of characteristics, negative valence and preferential identification in a visual search task, for instance. The present research examined whether these two characteristics can be acquired by non-fear relevant stimuli (geometric shapes) as a result of Pavlovian fear conditioning. Two experiments employed an aversive learning paradigm with geometric shape CSs and a shock US, with stimulus ratings, affective priming and visual search performance assessed before and after acquisition and after extinction. Differential electrodermal responses, larger during CS1 than CS, were present during acquisition but not during extinction. Affective priming results suggest that the CS1 acquired negative valence during acquisition, which was lost during extinction. However, negative valence as indexed by more negative ratings for CS1 than for CS shapes seemed to survive extinction. Preferential attentional processing as indexed by faster detection of CS1 among CS shapes than vice versa on the visual search task also remained. The current research confirmed that characteristics of fear relevant stimuli can be acquired in an aversive learning episode and that they may be extinguished. This supports the proposal that fear relevance may be malleable through learning.
Resumo:
Reproductive conflicts within animal societies occur when all females can potentially reproduce. In social insects, these conflicts are regulated largely by behaviour and chemical signalling. There is evidence that presence of signals, which provide direct information about the quality of the reproductive females would increase the fitness of all parties. In this study, we present an association between visual and chemical signals in the paper wasp Polistes satan. Our results showed that in nest-founding phase colonies, variation of visual signals is linked to relative fertility, while chemical signals are related to dominance status. In addition, experiments revealed that higher hierarchical positions were occupied by subordinates with distinct proportions of cuticular hydrocarbons and distinct visual marks. Therefore, these wasps present cues that convey reliable information of their reproductive status.
Resumo:
Ohman and colleagues provided evidence for preferential processing of pictures depicting fear-relevant animals by showing that pictures of snakes and spiders are found faster among pictures of fiowers and mushrooms than vice versa and that the speed of detecting fear-relevant animals was not affected by set size whereas the speed of detecting fiowers/mushrooms was. Experiment 1 replicated this finding. Experiment 2, however, found similar search advantages when pictures of cats and horses or of wolves and big cats were to be found among pictures of flowers and mushrooms. Moreover, Experiment 3, in a within subject comparison, failed to find faster identification of snakes and spiders than of cats and horses among flowers and mushrooms. The present findings seem to indicate that previous reports of preferential processing of pictures of snakes and spiders in a visual search task may reflect a processing advantage for animal pictures in general rather than fear-relevance.
Resumo:
We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.
Resumo:
We compared the responsiveness of the LGN and the early retinotopic cortical areas to stimulation of the two cone-opponent systems (red - green and blue - yellow) and the achromatic system. This was done at two contrast levels to control for any effect of contrast. MR images were acquired on seven subjects with a 4T Bruker MedSpec scanner. The early visual cortical areas were localised by phase encoded retinotopic mapping with a volumetric analysis (Dumoulin et al, 2003 NeuroImage 18 576 - 587). We initially located the LGN in four subjects by using flickering stimuli in a separate scanning session, but subsequently identified it using the experimental stimuli. Experimental stimuli were sine-wave counterphasing rings (2 Hz, 0.5 cycle deg-1), cardinal for the selective activation of the L/M cone-opponent (RG), S cone-opponent (BY), and achromatic (Ach) systems. A region of interest analysis was performed. When presented at equivalent absolute contrasts (cone contrast = 5% - 6%), the BOLD response of the LGN is strongest to isoluminant red - green stimuli and weakest to blue - yellow stimuli, with the achromatic response falling in between. Area V1, on the other hand, responds best to both chromatic stimuli, with the achromatic response falling below. The key change from the LGN to V1 is a dramatic boost in the relative blue - yellow response, which occurred at both contrast levels used. This greatly enhanced cortical response to blue - yellow relative to the red - green and achromatic responses may be due to an increase in cell number and/or cell response between the LGN and V1. We speculate that the effect might reflect the operation of contrast constancy across colour mechanisms at the cortical level.
Resumo:
A polymorphism of the dopamine transporter gene (DAT1, 10-repeat) is associated with attention-deficit hyperactivity disorder (ADHD) and has been linked to an enhanced response to methylphenidate (MPH). One aspect of the attention deficit in ADHD includes a subtle inattention to left space, resembling that seen after right cerebral hemisphere damage. Since left-sided inattention in ADHD may resolve when treated with MPH, we asked whether left-sided inattention in ADHD was related to DAT1 genotype and the therapeutic efficacy of MPH. A total of 43 ADHD children and their parents were genotyped for the DAT1 30 variable number of tandem repeats polymorphism. The children performed the Landmark Test, a well-validated measure yielding a spatial attentional asymmetry index ( leftward to rightward attentional bias). Parents rated their child's response to MPH retrospectively using a three-point scale ( no, mediocre or very good response). Additionally, parents used a symptom checklist to rate behavior while on and off medication. A within-family control design determined whether asymmetry indices predicted biased transmission of 10-repeat parental DAT1 alleles and/or response to MPH. It was found that left-sided inattention predicted transmission of the 10-repeat allele from parents to probands and was associated with the severity of ADHD symptomatology. Children rated as achieving a very good response to MPH displayed left-sided inattention, while those rated as achieving a poorer response did not. Our results suggest a subgroup of children with ADHD for whom the 10-repeat DAT1 allele is associated with left-sided inattention. MPH may be most efficacious in this group because it ameliorates a DAT1-mediated hypodopaminergic state.
Resumo:
PURPOSE. To evaluate the change in vision after 3 monthly consecutive intravitreal injections of 1.25 mg of bevacizumab for neovascular age-related macular degeneration (AMD). METHODS. A retrospective analysis of 35 eyes was performed. Visual acuity (VA) at initial visit and at each follow-up visit was compared. The injection of bevacizumab was performed at 30-day intervals and patients were observed for 5 months after the last injection. RESULTS. Of the 35 eyes, 9 had received previous treatment with photodynamic therapy with or without 4 mg of intravitreal triamcinolone. VA was measured in Snellen table and transformed into logMAR for statistical purposes. Mean age was 76.66 years (range, 49-90 years). There were 24(69%) women and 11(31%) men. Mean VA at the initial visit was 0.92 +/- 0.50. At month 1, mean VA was 0.84 +/- 0.51 and at month 2 was 0.74 +/- 0.51. At month 3, mean VA remained 0.74 +/- 0.49. Six and 8 months after the initial visit, VA was 0.79 +/- 0.49 and 0.77 +/- 0.50, respectively. The improvement in VA was statistically significant at month 2 and at the end of the follow-up (8 months) compared with the baseline VA. CONCLUSIONS. Three consecutive monthly injections of intravitreal bevacizumab to treat neovascular AMD is effective in improving VA in the short term. Longer prospective studies should be performed to confirm VA stability after the third injection. (Eur J Ophthalmol 2010; 20: 740-4)
Resumo:
Individuals with Autism Spectrum Disorder (ASD) are generally thought to have impaired attentional and executive function upon which all their cognitive and behaviour functions are based. Mental Rotation is a recognized visuo-spatial task, involving spatial working memory, known to involve activation in the fronto-parietal networks. To elucidate the functioning of fronto-parietal networks in ASD, the aim of this study was to use fMRI techniques with a mental rotation task, to characterize the underlying functional neural system. Sixteen male participants (seven highfunctioning autism or Asperger's syndrome; nine ageand performance IQ-matched controls) underwent fMRI. Participants were presented with 18 baseline and 18 rotation trials, with stimuli rotated 3- dimensionaUy (45°-180°). Data were acquired on a 3- Tesla scanner. The most widely accepted area reported to be involved in processing of visuo-spatial information. Posterior Parietal Cortex, was found to be activated in both groups, however, the ASD group showed decreased activation in cortical and subcortical frontal structures that are highly interconnected, including lateral and medial Brodmann area 6, frontal eye fields, caudate, dorsolateral prefrontal cortex and anterior cingulate. The suggested connectivity between these regions indicates that one or more circuits are impaired as a result of the disorder. In future it is hoped that we are able to identify the possible point of origin of this dysfunction, or indeed if the entire network is dysfunctional.
The selection of intended actions and the observation of others' actions: A time-resolved fMRI study
Resumo:
Whenever we plan, imagine, or observe an action, the motor systems that would be involved in preparing and executing that action are similarly engaged. The way in which such common motor activation is formed, however, is likely to differ depending on whether it arises from our own intentional selection of action or from the observation of another's action. In this study, we use time-resolved event-related functional MRI to tease apart neural processes specifically related to the processing of observed actions, the selection of our own intended actions, the preparation for movement, and motor response execution. Participants observed a finger gesture movement or a cue indicating they should select their own finger gesture to perform, followed by a 5-s delay period; participants then performed the observed or self-selected action. During the preparation and readiness for action, prior to initiation, we found activation in a common network of higher motor areas, including dorsal and ventral premotor areas and the pre-supplementary motor area (pre-SMA); the more caudal SMA showed greater activation during movement execution. Importantly, the route to this common motor activation differed depending on whether participants freely selected the actions to perform or whether they observed the actions performed by another person. Observation of action specifically involved activation of inferior and superior parietal regions, reflecting involvement of the dorsal visual pathway in visuomotor processing required for planning the action. In contrast, the selection of action specifically involved the dorsal lateral prefrontal and anterior cingulate cortex, reflecting the role of these prefrontal areas in attentional selection and guiding the selection of responses. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Previous work examining context effects in children has been limited to semantic context. The current research examined the effects of grammatical priming of word-naming in fourth-grade children. In Experiment 1, children named both inflected and uninflected noun and verb target words faster when they were preceded by grammatically constraining primes than when they were preceded by neutral primes. Experiment 1 used a long stimulus onset asynchrony (SOA) interval of 750 msec. Experiment 2 replicated the grammatical priming effect at two SOA intervals (400 msec and 700 msec), suggesting that the grammatical priming effect does not reflect the operation of any gross strategic effects directly attributable to the long SOA interval employed in Experiment 1. Grammatical context appears to facilitate target word naming by constraining target word class. Further work is required to elucidate the loci of this effect.