999 resultados para Astarte borealis, d13C


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon isotopic composition of predominantly marine kerogen in latest Oligocene mudstones of the Peru Margin ODP 682A Hole shows an about 3.5? increase with decreasing age. Py-GC and elemental (C=N ratio) analysis of the kerogen plus sulphur isotopic study together with earlier knowledge on geological setting and organic geochemistry results in a better understanding of depositionary environment and allows to separation of the influence of concentration of water dissolved carbon dioxide (ce) on kerogen delta13C from that of other factors (bacterial degradation, sea surface temperature, DIC delta13C, productivity, and admixture of land plant OM). Based on this analysis, the major part of the kerogen shift is considered as a result of the latest Oligocene decrease of marine photosynthetic carbon isotopic fractionation in the Peru Margin photic zone, which in turn possibly reflects a simultaneous drop in atmospheric CO2 level. Uncertainties in the evaluation of the factors affecting the marine photosynthetic carbon isotopic fractionation and the extent of ocean-atmosphere disequilibrium do not permit calculation of the decrease of the atmospheric CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated chemostratigraphic (87Sr/86Sr, d13C and 18O) study of benthic foraminifera is presented for a 210 m-thick, intermediate depth (upper/middle bathyal transition), Miocene nannofossil ooze section of Ocean Drilling Program Site 1120, Campbell Plateau off New Zealand. Our results indicate that new 87Sr/86Sr, d13C and d18O profiles are wholly consistent with their respective Miocene reference curves. These observations facilitate identification of a total of five reliable chemostratigraphic datums, which are based on the fundamental structural changes in the 87Sr/86Sr curve and paired simultaneous d13C and d18O events. The resultant age-depth relationship clearly shows that the Miocene (20-5 Ma) biopelagic sedimentation on the Campbell Plateau was essentially continuous at a moderate to high, linear sedimentation rate (17.5 m/m.y. with an exception of the uppermost 13 m). Our findings do not support the shipboard biostratigraphic age model, which assumes that the critical early-middle Miocene transition was interrupted by a major hiatus (<~3 m.y.). Because of its unique bathymetric setting at a paleowater-depth of ~ 600 m, which is among the shallowest of the coeval isotopically studied deep-sea sections in the South Pacific/Southern Ocean, Site 1120 will serve as a reference section for surveying the evolution of intermediate-water paleoceanography in the Southern Hemisphere across the middle Miocene climatic transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period 1913-1999. Maps with the temporal distribution of physical and biological variables of the Barents and Kara Seas are presented, with proposed quality control criteria for phytoplankton and zooplankton data. Changes in the plankton community structure between the 1930s, 1950s, and 1990s are discussed. Multiple tables of Arctic Seas phytoplankton and zooplankton species are presented, containing ecological and geographic characteristics for each species, and images of live cells for the dominant phytoplankton species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two hundred and seventy five mollusc species from the continental shelf off Southern Spanish Sahara (depth: 32-60 m) were identified. Their distribution pattern is strongly influenced by the nature of the bottom (firm substrate, shelter, stability of sediment) rather than other factors at that depth interval. This faunal assemblage shows great affinity to the Mediterranean and Lusitanian faunas, and comprises only few (22 %) exclusively Senegalese and species living south of Senegal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High biogenic sedimentation rates in the late Neogene at DSDP Site 590 (1293 m) provide an exceptional opportunity to evaluate late Neogene (late Miocene to latest Pliocene) paleoceanography in waters transitional between temperate and warm-subtropical water masses. Oxygen and carbon isotope analyses and quantitative planktonic foraminiferal data have been used to interpret the late Neogene paleoceanographic evolution of this site. Faunal and isotopic data from Site 590 show a progression of paleoceanographic events between 6.7 and 4.3 Ma, during the latest Miocene and early Pliocene. First, a permanent depletion in both planktonic and benthic foraminiferal d13C, between 6.7 and 6.2 Ma, can be correlated to the globally recognized late Miocene carbon isotope shift. Second, a 0.5 per mil enrichment in benthic foraminiferal d18O between 5.6 and 4.7 Ma in the latest Miocene to early Pliocene corresponds to the latest Miocene oxygen isotopic enrichment at Site 284, located in temperate waters south of Site 590. This enrichment in d18O coincides with a time of cool surface waters, as is suggested by high frequencies of Neogloboquadrina pachyderma and low frequencies of the warmer-water planktonic foraminifers, as well as by an enrichment in planktonic foraminiferal d18O relative to the earlier Miocene. By 4.6 Ma, benthic foraminiferal d18O values become depleted and remain fairly stable until about 3.8 Ma. The early Pliocene (~4.3 to 3.2 Ma) is marked by a significant increase in biogenic sedimentation rates (37.7 to 83.3 m/m.y.). During this time, heaviest values in planktonic foraminiferal d18O are associated with a decrease in the gradient between surface and intermediate-water d13C and d18O, a 1.0 per mil depletion in the d13C of two species of planktonic foraminifers, and a mixture of warm and cool planktonic foraminiferal elements. These data suggest that localized upwelling at the Subtropical Divergence produced an increase in surface-water productivity during the early Pliocene. A two-step enrichment in benthic foraminiferal d18O occurs in the late Pliocene sequence at Site 590. A 0.3 per mil average enrichment at about 3.6 Ma is followed by a 0.5 per mil enrichment at 2.7 Ma. These two events can be correlated with the two-step isotopic enrichment associated with late Pliocene climatic instability and the initiation of Northern Hemisphere glaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interpretations of calcite strontium/calcium records in terms of ocean history and calcite diagenesis require distinguishing the effects on deep-sea calcite sediments of changes in ocean chemistry, of different mixes of calcite-depositing organisms as sediment contributors through time and space, and of the loss of Sr during diagenetic calcite recrystallization. In this paper Sr/Ca and d18O values of bulk calcium carbonate sediments are used to estimate the relative extent of calcite recrystallization in samples from four time points (core tops, 5.6, 9.4, and 37.1 Ma) at eight Ocean Drilling Program sites in the equatorial Atlantic (Ceara Rise) and equatorial Pacific (Ontong Java Plateau and two eastern equatorial Pacific sites). The possibility that site-to-site differences in calcite Sr/Ca at a given time point originated from temporal variations in ocean chemistry was eliminated by careful age control of samples for each time point, with sample ages differing by less than the oceanic residence times of Sr and Ca. The Sr/Ca and d18O values of 5.6- and 9.4-Ma samples from the less-carbonate-rich eastern equatorial Pacific sites and Ceara Rise Site 929 appear to be less diagenetically altered than the Sr/Ca and d18O values of contemporaneous samples from the more carbonate-rich sites. It is evident from these data that both Sr/Ca and d18O in bulk calcite have been diagenetically altered in some samples 5.6 Ma and older. These data indicate that noncarbonate sedimentary components, like clay and biogenic silica, have partially suppressed recrystallization at the lower carbonate sites. Sr/Ca data from the less altered, carbonate-poor sites indicate higher oceanic Sr/Ca relative to today at 5.6 and 9.4 Ma.