952 resultados para Aspergillus japonicus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy and tolerance of a novel microbial 6-phytase were investigated in rainbow trout, Oncorhynchus mykiss, and Nile tilapia, Oreochromis niloticus. Reference diets were sufficient in available phosphorus (P). The test diet limiting in available P was supplemented with phytase at 500, 1000, or 2000 phytase units/kg feed. The enzyme was effective in increasing total P apparent digestibility coefficient in relation to increasing the dose of phytase in rainbow trout and Nile tilapia. Zinc apparent digestibility improved in relation to phytase supplementation in rainbow trout. P release due to phytase supplementation ranged from 0.06 to 0.18% P/kg feed in rainbow trout and from 0.13 to 0.26% P/kg feed in Nile tilapia. A 58-d performance trial was conducted to evaluate tolerance of fish to phytase supplementation. Dietary treatments consisted of a basal diet without phytase or supplemented with 2000 and 200,000 phytase units/kg feed. Results indicate that this novel microbial 6-phytase is well tolerated by fish. Significant improvements for growth as well as feed conversion ratio were observed when the phytase was fed at 2000 phytase units/kg feed. This phytase is proven efficient in releasing P from phytate and could be added when plants are used for fish meal replacement in diets for salmonid and omnivorous fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E. Schmidt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Von Apotheker Mortimer Scholtz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Von Apotheker M. Scholtz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Nosocomial invasive aspergillosis (a highly fatal disease) is an increasing problem for immunocompromised patients. Aspergillus spp. can be transmitted via air (most commonly) and by water. ^ The hypothesis for this prospective study was that there is an association between patient occupancy, housekeeping practices, patients, visitors, and Aspergillus spp. loading. Rooms were sampled as not terminally cleaned (dirty) and terminally cleaned (clean). The secondary hypothesis was that Aspergillus spp. positive samples collected from more than one sampling location within the same patient room represent the same isolate. ^ Methods. Between April and October 2004, 2873 environmental samples (713 air, 607 water, 1256 surface and 297 spore traps) were collected in and around 209 “clean” and “dirty” patient rooms in a large cancer center hospital. Water sources included aerosolized water from patient room showerheads, sinks, drains, and toilets. Bioaerosol samples were from the patient room and from the running shower, flushing toilet, and outside the building. The surface samples included sink and shower drains, showerheads, and air grills. Aspergillus spp. positive samples were also sent for PCR, molecular typing (n = 89). ^ Results. All water samples were negative for Aspergillus spp. There were a total of 130 positive culturable samples (5.1%). The predominant species found was Aspergillus niger. Of the positive culturable samples, 106 (14.9%) were air and 24 (3.8%) were surface. There were 147 spore trap samples, and 49.5% were positive for Aspergillus/Penicillum spp. Of the culturable positive samples sent for PCR, 16 were indistinguishable matches. There was no significant relationship between air and water samples and positive samples from the same room. ^ Conclusion. Primarily patients, visitors and staff bring the Aspergillus spp. into the hospital. The high number of A. niger samples suggests the spores are entering the hospital from outdoors. Eliminating the materials brought to the patient floors from the outside, requiring employees, staff, and visitors to wear cover up over their street clothes, and improved cleaning procedures could further reduce positive samples. Mold strains change frequently; it is probably more significant to understand pathogenicity of viable spores than to commit resources on molecular strain testing on environmental samples alone. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary metabolites are produced by numerous organisms and can either be benign to humans or harmful. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often located in subtelomeric regions of the chromosome. These clusters are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Secondary metabolites are also regulated by a variety of factors, including nutritional factors, environmental factors and developmental processes. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal organisms, although no study has demonstrated the direct binding of any protein to a promoter region in the gliotoxin cluster. I report here two novel proteins, GipA, a C2H2 transcription factor and GipB, a hybrid sensor kinase, which are involved in regulating the gliotoxin biosynthetic cluster. GipA plays an important role in gliotoxin production, as high-copy expression of gipA induces gliotoxin biosynthesis and loss of gipA reduces gliotoxin biosynthesis by 50%. GipB is also involved in regulating gliotoxin production, as high-copy expression of gipB induces gliotoxin biosynthesis, but only during certain stages of asexual development. Furthermore, loss of gipB reduces gliotoxin biosynthesis by 10%. Based on data obtained from this project, I propose a model for the regulation of gliA, the efflux pump of the gliotoxin cluster, which involves GipB signaling through both GliZ and GipA. I propose that GliZ and GipA are interdependent, as mutation of the GipA DNA binding site in the gliA promoter negatively affects both GliZ-mediated and GipA-mediated induction of gliA. This is further supported by the fact that GliZ cannot fully induce gliA in the absence of GipA and vice versa. This is the first time that anyone has shown evidence of a protein directly binding to the gliotoxin cluster. Even though biosynthetic clusters are often coordinately regulated, my model raises the possibility that gliA is independently regulated, as the layout of the binding site in the gliA promoter is not present upstream of any other genes in the gliotoxin cluster, except for gliZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metals pollution in marine environments has caused great damage to marine biological and ecological systems. Heavy metals accumulate in marine creatures, after which they are delivered to higher trophic levels of marine organisms through the marine food chain, which causes serious harm to marine biological systems and human health. Additionally, excess carbon dioxide in the atmosphere has caused ocean acidification. Indeed, about one third of the CO2 released into the atmosphere by anthropogenic activities since the beginning of the industrial revolution has been absorbed by the world's oceans, which play a key role in moderating climate change. Modeling has shown that, if current trends in CO2 emissions continue, the average pH of the ocean will reach 7.8 by the end of this century, corresponding to 0.5 units below the pre-industrial level, or a three-fold increase in H+ concentration. The ocean pH has not been at this level for several millions of years. Additionally, these changes are occurring at speeds 100 times greater than ever previously observed. As a result, several marine species, communities and ecosystems might not have time to acclimate or adapt to these fast changes in ocean chemistry. In addition, decreasing ocean pH has the potential to seriously affect the growth, development and reproduction reproductive processes of marine organisms, as well as threaten normal development of the marine ecosystem. Copepods are an important part of the meiofauna that play an important role in the marine ecosystem. Pollution of the marine environment can influence their growth and development, as well as the ecological processes they are involved in. Accordingly, there is important scientific value to investigation of the response of copepods to ocean acidification and heavy metals pollution. In the present study, we evaluated the effects of simulated future ocean acidification and the toxicological interaction between ocean acidity and heavy metals of Cu and Cd on T. japonicus. To accomplish this, harpacticoids were exposed to Cu and Cd concentration gradient seawater that had been equilibrated with CO2 and air to reach pH 8.0, 7.7, 7.3 and 6.5 for 96 h. Survival was not significantly suppressed under single sea water acidification, and the final survival rates were greater than 93% in both the experimental groups and the controls. The toxicity of Cu to T. japonicus was significantly affected by sea water acidification, with the 96h LC50 decreasing by nearly threefold from 1.98 to 0.64 mg/L with decreasing pH. The 96 h LC50 of Cd decreased with decreasing pH, but there was no significant difference in mortality among pH treatments. The results of the present study demonstrated that the predicted future ocean acidification has the potential to negatively affect survival of T. japonicus by exacerbating the toxicity of Cu. The calculated safe concentrations of Cu were 11.9 (pH 7.7) and 10.5 (pH 7.3) µg/L, which were below the class I value and very close to the class II level of the China National Quality Standard for Sea Water. Overall, these results indicate that the Chinese coastal sea will face a

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the impact of ocean acidification on the early development of sea cucumber Apostichopus japonicus. The effect of pH-levels (pH 8.04, 7.85, 7.70 and 7.42) were tested on post-fertilization success, developmental (stage duration) and growth rates. Post-fertilization success decreased linearly with pH leading to a 6% decrease at pH 7.42 as compared to pH 8.1. The impact of pH on developmental time was stage-dependent: (1) stage duration increased linearly with decreasing pH in early-auricularia stage; (2) decreased linearly with decreasing pH in the mid-auricularia stage; but (3) pH decline had no effect on the late-auricularia stage. At the end of the experiment, the size of doliolaria larvae linearly increased with decreasing pH. In conclusion, a 0.62 unit decrease in pH had relatively small effects on A. japonicus early life-history compared to other echinoderms, leading to a maximum of 6% decrease in post-fertilization success and subtle effects on growth and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %/day decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Warming of the world's oceans is predicted to have many negative effects on organisms as they have optimal thermal windows. In coastal waters, however, both temperatures and pCO2 (pH) exhibit diel variations, and biological performances are likely to be modulated by physical and chemical environmental changes. To understand how coastal zooplankton respond to the combined impacts of heat shock and increased pCO2, the benthic copepod Tigriopus japonicus were treated at temperatures of 24, 28, 32 and 36 °C to simulate natural coastal temperatures experienced in warming events, when acclimated in the short term to either ambient (LC, 390 µatm) or future CO2 (HC, 1000 µatm). HC and heat shock did not induce any mortality of T. japonicus, though respiration increased up to 32 °C before being depressed at 36 °C. Feeding rate peaked at 28 °C but did not differ between CO2 treatments. Expression of heat shock proteins (hsps mRNA) was positively related to temperature, with no significant differences between the CO2 concentrations. Nauplii production was not affected across all treatments. Our results demonstrate that T. japonicus responds more sensitively to heat shocks rather than to seawater acidification; however, ocean acidification may synergistically act with ocean warming to mediate the energy allocation of copepods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some group I introns self-splice in vitro, but almost all are thought to be assisted by proteins in vivo. Mutational analysis has shown that the splicing of certain group I introns depends upon a maturase protein encoded by the intron itself. However the effect of a protein on splicing can be indirect. We now provide evidence that a mitochondrial intron-encoded protein from Aspergillus nidulans directly facilitates splicing in vitro. This demonstrates that a maturase is an RNA splicing protein. The protein-assisted reaction is as fast as that of any other known group I intron. Interestingly the protein is also a DNA endonuclease, an activity required for intron mobilization. Mobile elements frequently encode proteins that promote their propagation. Intron-encoded proteins that also assist RNA splicing would facilitate both the transposition and horizontal transmission of introns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution video microscopy, image analysis, and computer simulation were used to study the role of the Spitzenkörper (Spk) in apical branching of ramosa-1, a temperature-sensitive mutant of Aspergillus niger. A shift to the restrictive temperature led to a cytoplasmic contraction that destabilized the Spk, causing its disappearance. After a short transition period, new Spk appeared where the two incipient apical branches emerged. Changes in cell shape, growth rate, and Spk position were recorded and transferred to the fungus simulator program to test the hypothesis that the Spk functions as a vesicle supply center (VSC). The simulation faithfully duplicated the elongation of the main hypha and the two apical branches. Elongating hyphae exhibited the growth pattern described by the hyphoid equation. During the transition phase, when no Spk was visible, the growth pattern was nonhyphoid, with consecutive periods of isometric and asymmetric expansion; the apex became enlarged and blunt before the apical branches emerged. Video microscopy images suggested that the branch Spk were formed anew by gradual condensation of vesicle clouds. Simulation exercises where the VSC was split into two new VSCs failed to produce realistic shapes, thus supporting the notion that the branch Spk did not originate by division of the original Spk. The best computer simulation of apical branching morphogenesis included simulations of the ontogeny of branch Spk via condensation of vesicle clouds. This study supports the hypothesis that the Spk plays a major role in hyphal morphogenesis by operating as a VSC—i.e., by regulating the traffic of wall-building vesicles in the manner predicted by the hyphoid model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A physical map of the 31-megabase Aspergillus nidulans genome is reported, in which 94% of 5,134 cosmids are assigned to 49 contiguous segments. The physical map is the result of a two-way ordering process, in which clones and probes were ordered simultaneously on a binary DNA/DNA hybridization matrix. Compression by elimination of redundant clones resulted in a minimal map, which is a chromosome walk. Repetitive DNA is nonrandomly dispersed in the A. nidulans genome, reminiscent of heterochromatic banding patterns of higher eukaryotes. We hypothesize gene clusters may arise by horizontal transfer and spread by transposition to explain the nonrandom pattern of repeats along chromosomes.