859 resultados para Artificial wetland abatement


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From 5 May 2003 to early June 2005, nest site selection of Black-necked Cranes Grits nigricollis was studied at the Ruoergai Wetland Nature Reserve (RWNR), an important breeding area for the species in China. Results showed that the crane nests only in we

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most endangered populations of Black-necked Cranes (Grus nigricollis), the central population, is declining due to habitat loss and degradation, but little is known about their space use patterns and habitat preferences. We examined the space use and habitat preferences of Black-necked Cranes during the winter of 2007-2008 at the Napahai wetland in northwest Yunnan, China, where approximately 300 Black-necked Cranes (>90% of the total central population) spent the winter. Euclidean distance analysis was employed to determine the habitat preferences of Black-necked Cranes, and a local nearest-neighbor, convex-hull construction method was used to examine space use. Our results indicate that Black-necked Cranes preferred shallow marsh and wet meadow habitats and avoided farmland and dry grassland. Core-use areas (50% isopleths) and total-use areas (100% isopleths) accounted for only 1.2% and 28.2% of the study area, respectively. We recommend that habitat protection efforts focus on shallow marsh and wet meadow habitats to maintain preferred foraging sites. Core-use areas, such as the primary foraging areas of Black-necked Cranes, should be designated as part of the core zone of the nature reserve. Monthly shifts in the core-use areas of the cranes also indicate that the reserve should be large enough to permit changes in space use. In addition to preserving habitat, government officials should also take measures to decrease human activity in areas used by foraging Black-necked Cranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An account is given of the fabrication and deployment of artificial reefs used in the SEAFDEC/AQD's Community Fishery Resource Management project, which focused on Malalison Island located in west Central Philippines. The project aimed to apply community-based techniques of fishery resource management through the collaboration of community organizations, biologists and social scientists. The 3 types of reefs (building blocks, concrete pipe culvert, and modified concrete pipe culvert) were deployed at Gui-ob reef covering an area of less than 1 ha.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nakivubo swamp (papyrus wetland) is located in the south east of the city of Kampala, Uganda. This swamp has been receiving waste water from Nakivubo channel for more than two decades. This investigation was aimed at monitoring the level of pollutants (nutrients and faecal coliforms) as the waste water filtrates through the swamp and the flow patterns of waste water through the swamp. From this preliminary investigation it was found out that the waste water is not evenly distributed over the swamp. Also high levels of pollutants seem to filtrate through the swamp and enter Inner Murchison Bay - Lake Victoria. Further research is under way to investigate in more detail the capacity of Nakivubo swamp to remove nutrients/pollutants from waste water flowing through it and the dominant mechanisms/processes involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Brief Report we investigate biomimetic fluid propulsion due to an array of periodically beating artificial cilia. A generic model system is defined in which the effects of inertial fluid forces and the spatial, temporal, and orientational asymmetries of the ciliary motion can be individually controlled. We demonstrate that the so-far unexplored orientational asymmetry plays an important role in generating flow and that the flow increases sharply with Reynolds number and eventually becomes unidirectional. We introduce the concept of configurational symmetry that unifies the spatial, temporal, and orientational symmetries. The breaking of configurational symmetry leads to fluid propulsion in microfluidic channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural cilia are hairlike microtubule-based structures that are able to move fluid on the micrometer scale using asymmetric motion. In this article, we follow a biomimetic approach to design artificial cilia lining the inner surfaces of microfluidic channels with the goal of propelling fluid. The artificial cilia consist of polymer films filled with superparamagnetic nanoparticles, which can mimic the motion of natural cilia when subjected to a rotating magnetic field. To obtain the magnetic field and associated magnetization local to the cilia, we solve the Maxwell equations, from which the magnetic body moments and forces can be deduced. To obtain the ciliary motion, we solve the dynamic equations of motion, which are then fully coupled to the Navier-Stokes equations that describe the fluid flow around the cilia, thus taking full account of fluid inertial forces. The dimensionless parameters that govern the deformation behavior of the cilia and the associated fluid flow are arrived at using the principle of virtual work. The physical response of the cilia and the fluid flow for different combinations of elastic, fluid viscous, and inertia forces are identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.