993 resultados para Armillary spheres.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adhesive contact model between an elastic cylinder and an elastic half space is studied in the present paper, in which an external pulling force is acted on the above cylinder with an arbitrary direction and the contact width is assumed to be asymmetric with respect to the structure. Solutions to the asymmetric model are obtained and the effect of the asymmetric contact width on the whole pulling process is mainly discussed. It is found that the smaller the absolute value of Dundurs' parameter beta or the larger the pulling angle theta, the more reasonable the symmetric model would be to approximate the asymmetric one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid mixtures of water and deuterium oxide as the liquid phase, were used to match the density of charged colloidal particles. Kossel diffraction method was used to detect the crystal structures. The experiments under the density-matched (g=0) and unmatched (g=1) conditions are compared to examine the influence of gravity on the crystal structures formed by self-assembly of 110 nm (in diameter) polystyrene microspheres. The result shows that die gravity tends to make the lattice constants of colloidal crystals smaller at lower positions, which indicates that the effect of gravity should be taken into account in the study of the colloidal crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monodisperse polystyrene spheres are assembled into the colloidal crystal on the glass substrate by vertical deposition method, which is aimed at the so-called photonic crystal applications. The structural information of the bulk colloidal crystal is crucial for understanding the crystal growth mechanism and developing the various applications of colloidal crystal. Small-angle X-ray scattering (SAXS) technique was used to obtain the bulk structure of the colloidal crystal at Beamline 1W2A of BSRF. It is found that the SAXS pattern is sensitive to the relative orientation between the colloidal sample and the incident X-ray direction. The crystal lattice was well distinguished and determined by the SAXS data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]El presente artículo trata de analizar de forma crítica el papel desempeñado por las mujeres en las familias guipuzcoanas durante el Antiguo Régimen. A través del estudio de una serie de casos en los que se vieron implicadas personas del sexo femenino, se lleva a cabo un análisis profundo de las estructuras familiares, tratando de hacer hincapié en la variedad de situaciones y en la importancia de las pasiones y sentimientos que repercuten en la toma de decisiones y estrategias establecidas en las distintas esferas relacionales. Para ello, además de hacer uso de la importante producción historiográfica vasca y española, se hecha mano de documentación judicial, custodiada en archivos como el Archivo de la Real Chancillería de Valladolid y el Archivo General de Gipuzkoa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The foundation of Habermas's argument, a leading critical theorist, lies in the unequal distribution of wealth across society. He states that in an advanced capitalist society, the possibility of a crisis has shifted from the economic and political spheres to the legitimation system. Legitimation crises increase the more government intervenes into the economy (market) and the "simultaneous political enfranchisement of almost the entire adult population" (Holub, 1991, p. 88). The reason for this increase is because policymakers in advanced capitalist democracies are caught between conflicting imperatives: they are expected to serve the interests of their nation as a whole, but they must prop up an economic system that benefits the wealthy at the expense of most workers and the environment. Habermas argues that the driving force in history is an expectation, built into the nature of language, that norms, laws, and institutions will serve the interests of the entire population and not just those of a special group. In his view, policy makers in capitalist societies are having to fend off this expectation by simultaneously correcting some of the inequities of the market, denying that they have control over people's economic circumstances, and defending the market as an equitable allocator of income. (deHaven-Smith, 1988, p. 14). Critical theory suggests that this contradiction will be reflected in Everglades policy by communicative narratives that suppress and conceal tensions between environmental and economic priorities. Habermas’ Legitimation Crisis states that political actors use various symbols, ideologies, narratives, and language to engage the public and avoid a legitimation crisis. These influences not only manipulate the general population into desiring what has been manufactured for them, but also leave them feeling unfulfilled and alienated. Also known as false reconciliation, the public's view of society as rational, and "conductive to human freedom and happiness" is altered to become deeply irrational and an obstacle to the desired freedom and happiness (Finlayson, 2005, p. 5). These obstacles and irrationalities give rise to potential crises in the society. Government's increasing involvement in Everglades under advanced capitalism leads to Habermas's four crises: economic/environmental, rationality, legitimation, and motivation. These crises are occurring simultaneously, work in conjunction with each other, and arise when a principle of organization is challenged by increased production needs (deHaven-Smith, 1988). Habermas states that governments use narratives in an attempt to rationalize, legitimize, obscure, and conceal its actions under advanced capitalism. Although there have been many narratives told throughout the history of the Everglades (such as the Everglades was a wilderness that was valued as a wasteland in its natural state), the most recent narrative, “Everglades Restoration”, is the focus of this paper.(PDF contains 4 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motion of a single Brownian particle of arbitrary size through a dilute colloidal dispersion of neutrally buoyant bath spheres of another characteristic size in a Newtonian solvent is examined in two contexts. First, the particle in question, the probe particle, is subject to a constant applied external force drawing it through the suspension as a simple model for active and nonlinear microrheology. The strength of the applied external force, normalized by the restoring forces of Brownian motion, is the Péclet number, Pe. This dimensionless quantity describes how strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of the suspension. These interpreted quantities are calculated to first order in the volume fraction of bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively. With increasing applied force, the accumulation region compresses to form a thin boundary layer whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake. The magnitude of the microstructural disturbance is found to grow with increasing bath particle size -- small bath particles in the solvent resemble a continuum with effective microviscosity given by Einstein's viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect toward the minimum approach distance possible between the probe and bath particle, and the probe and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle is able to move past; this is a process that slows the motion of the probe by a factor of the size ratio. The intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions from Brownian motion, and force thicken at high Péclet number due to the increasing influence of the configuration-averaged reduction in the probe's hydrodynamic self mobility. Nonmonotonicity at finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-probe particle size ratio. The intrinsic microviscosity is found to grow with the size ratio for very small probes even at large-but-finite Péclet numbers. However, even a small repulsive interparticle potential, that excludes lubrication interactions, can reduce this intrinsic microviscosity back to an order one quantity. The results of this active microrheology study are compared to previous theoretical studies of falling-ball and towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and the singular limit of full hydrodynamic interactions is noted.

Second, the probe particle in question is no longer subject to a constant applied external force. Rather, the particle is considered to be a catalytically-active motor, consuming the bath reactant particles on its reactive face while passively colliding with reactant particles on its inert face. By creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoretically propel itself with some mean velocity. The effects of finite size of the solute are examined on the leading order diffusive microstructure of reactant about the motor. Brownian and interparticle contributions to the motor velocity are computed for several interparticle interaction potential lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity increasing with decreasing motor size. A discussion on Brownian rotation frames the context in which these results could be applicable, and future directions are proposed which properly incorporate reactant advection at high motor velocities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of the subducted lithospheric slab is investigated seismologically by tomographic inversions of ISC residual travel times. The slab, in which nearly all deep earthquakes occur, is fast in the seismic images because it is much cooler than the ambient mantle. High resolution three-dimensional P and S wave models in the NW Pacific are obtained using regional data, while inversion for the SW Pacific slabs includes teleseismic arrivals. Resolution and noise estimations show the models are generally well-resolved.

The slab anomalies in these models, as inferred from the seismicity, are generally coherent in the upper mantle and become contorted and decrease in amplitude with depth. Fast slabs are surrounded by slow regions shallower than 350 km depth. Slab fingering, including segmentation and spreading, is indicated near the bottom of the upper mantle. The fast anomalies associated with the Japan, Izu-Bonin, Mariana and Kermadec subduction zones tend to flatten to sub-horizontal at depth, while downward spreading may occur under parts of the Mariana and Kuril arcs. The Tonga slab appears to end around 550 km depth, but is underlain by a fast band at 750-1000 km depths.

The NW Pacific model combined with the Clayton-Comer mantle model predicts many observed residual sphere patterns. The predictions indicate that the near-source anomalies affect the residual spheres less than the teleseismic contributions. The teleseismic contributions may be removed either by using a mantle model, or using teleseismic station averages of residuals from only regional events. The slab-like fast bands in the corrected residual spheres are are consistent with seismicity trends under the Mariana Tzu-Bonin and Japan trenches, but are inconsistent for the Kuril events.

The comparison of the tomographic models with earthquake focal mechanisms shows that deep compression axes and fast velocity slab anomalies are in consistent alignment, even when the slab is contorted or flattened. Abnormal stress patterns are seen at major junctions of the arcs. The depth boundary between tension and compression in the central parts of these arcs appears to depend on the dip and topology of the slab.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen: Los centros educativos son un lugar de convivencia y, como en otros ámbitos de la sociedad, se producen conflictos. Si no se gestionan de manera positiva, éstos pueden afectar a dicha convivencia y para ello, se deben fomentar habilidades sociales específicas como lo es la mediación. Como estructura sistémica, la mediación es una herramienta de trabajo por y para la convivencia pacífica en los centros, en la que los alumnos adquieren un papel protagonista en su propia educación. Así, a través del diálogo los alumnos afrontan los problemas que surgen diariamente, adquiriendo compromisos y responsabilidades, tanto consigo mismo como con los demás; lo que mejora sensiblemente el clima escolar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive study was made of the flocculation of dispersed E. coli bacterial cells by the cationic polymer polyethyleneimine (PEI). The three objectives of this study were to determine the primary mechanism involved in the flocculation of a colloid with an oppositely charged polymer, to determine quantitative correlations between four commonly-used measurements of the extent of flocculation, and to record the effect of varying selected system parameters on the degree of flocculation. The quantitative relationships derived for the four measurements of the extent of flocculation should be of direct assistance to the sanitary engineer in evaluating the effectiveness of specific coagulation processes.

A review of prior statistical mechanical treatments of absorbed polymer configuration revealed that at low degrees of surface site coverage, an oppositely- charged polymer molecule is strongly adsorbed to the colloidal surface, with only short loops or end sequences extending into the solution phase. Even for high molecular weight PEI species, these extensions from the surface are theorized to be less than 50 Å in length. Although the radii of gyration of the five PEI species investigated were found to be large enough to form interparticle bridges, the low surface site coverage at optimum flocculation doses indicates that the predominant mechanism of flocculation is adsorption coagulation.

The effectiveness of the high-molecular weight PEI species 1n producing rapid flocculation at small doses is attributed to the formation of a charge mosaic on the oppositely-charged E. coli surfaces. The large adsorbed PEI molecules not only neutralize the surface charge at the adsorption sites, but also cause charge reversal with excess cationic segments. The alignment of these positive surface patches with negative patches on approaching cells results in strong electrostatic attraction in addition to a reduction of the double-layer interaction energies. The comparative ineffectiveness of low-molecular weight PEI species in producing E. coli flocculation is caused by the size of the individual molecules, which is insufficient to both neutralize and reverse the negative E.coli surface charge. Consequently, coagulation produced by low molecular weight species is attributed solely to the reduction of double-layer interaction energies via adsorption.

Electrophoretic mobility experiments supported the above conclusions, since only the high-molecular weight species were able to reverse the mobility of the E. coli cells. In addition, electron microscope examination of the seam of agglutination between E. coli cells flocculation by PEI revealed tightly- bound cells, with intercellular separation distances of less than 100-200 Å in most instances. This intercellular separation is partially due to cell shrinkage in preparation of the electron micrographs.

The extent of flocculation was measured as a function of PEl molecular weight, PEl dose, and the intensity of reactor chamber mixing. Neither the intensity of mixing, within the common treatment practice limits, nor the time of mixing for up to four hours appeared to play any significant role in either the size or number of E.coli aggregates formed. The extent of flocculation was highly molecular weight dependent: the high-molecular-weight PEl species produce the larger aggregates, the greater turbidity reductions, and the higher filtration flow rates. The PEl dose required for optimum flocculation decreased as the species molecular weight increased. At large doses of high-molecular-weight species, redispersion of the macroflocs occurred, caused by excess adsorption of cationic molecules. The excess adsorption reversed the surface charge on the E.coli cells, as recorded by electrophoretic mobility measurements.

Successful quantitative comparisons were made between changes in suspension turbidity with flocculation and corresponding changes in aggregate size distribution. E. coli aggregates were treated as coalesced spheres, with Mie scattering coefficients determined for spheres in the anomalous diffraction regime. Good quantitative comparisons were also found to exist between the reduction in refiltration time and the reduction of the total colloid surface area caused by flocculation. As with turbidity measurements, a coalesced sphere model was used since the equivalent spherical volume is the only information available from the Coulter particle counter. However, the coalesced sphere model was not applicable to electrophoretic mobility measurements. The aggregates produced at each PEl dose moved at approximately the same vlocity, almost independently of particle size.

PEl was found to be an effective flocculant of E. coli cells at weight ratios of 1 mg PEl: 100 mg E. coli. While PEl itself is toxic to E.coli at these levels, similar cationic polymers could be effectively applied to water and wastewater treatment facilities to enhance sedimentation and filtration characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of composition on the structure and on the electric and magnetic properties of amorphous Pd-Mn-P and Pd-Co-P prepared by rapid quenching techniques were investigated in terms of (1) the 3d band filling of the first transition metal group, (2) the phosphorus concentration effect which acts as an electron donor and (3) the transition metal concentration.

The structure is essentially characterized by a set of polyhedra subunits essentially inverse to the packing of hard spheres in real space. Examination of computer generated distribution functions using Monte Carlo random statistical distribution of these polyhedra entities demonstrated tile reproducibility of the experimentally calculated atomic distribution function. As a result, several possible "structural parameters" are proposed such as: the number of nearest neighbors, the metal-to-metal distance, the degree of short-range order and the affinity between metal-metal and metal-metalloid. It is shown that the degree of disorder increases from Ni to Mn. Similar behavior is observed with increase in the phosphorus concentration.

The magnetic properties of Pd-Co-P alloys show that they are ferromagnetic with a Curie temperature between 272 and 399°K as the cobalt concentration increases from 15 to 50 at.%. Below 20 at.% Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range . The electric resistivity measurements were performed from liquid helium temperatures up to the vicinity of the melting point (900°K). The thermomagnetic analysis was carried out under an applied field of 6.0 kOe. The electrical resistivity of Pd-Co-P shows the coexistence of a Kondo-like minimum with ferromagnetism. The minimum becomes less important as the transition metal concentration increases and the coefficients of ℓn T and T^2 become smaller and strongly temperature dependent. The negative magnetoresistivity is a strong indication of the existence of localized moment.

The temperature coefficient of resistivity which is positive for Pd- Fe-P, Pd-Ni-P, and Pd-Co-P becomes negative for Pd-Mn-P. It is possible to account for the negative temperature dependence by the localized spin fluctuation model and the high density of states at the Fermi energy which becomes maximum between Mn and Cr. The magnetization curves for Pd-Mn-P are typical of those resulting from the interplay of different exchange forces. The established relationship between susceptibility and resistivity confirms the localized spin fluctuation model. The magnetoresistivity of Pd-Mn-P could be interpreted in tenns of a short-range magnetic ordering that could arise from the Rudennan-Kittel type interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Young's modulus, stress-strain curves, and failure properties of glass bead-filled EPDM vulcanizates were studied under superposed hydrostatic pressure. The glass bead-filled EPDM was employed as a representation of composite systems, and the hydrostatic pressure controls the filler-elastomer separation under deformation. This separation shows up as a volume change of the system, and its infuence is reflected in the mechanical behavior as a reinforcing effect of variable degree.

The strain energy stored in the composite system in simple tension was calculated by introducing a model which is described as a cylindrical block of elastomer with two half spheres of filler on each end with their centers on the axis of the cylinder. In the derivation of the strain energy, assumptions were made to obtain the strain distribution in the model, and strain energy-strain relation for the elastomer was also assumed. The derivation was carried out for the case of no filler-elastomer separation and was modified to include the case of filler-elastomer separation.

The resulting strain energy, as a function of stretch ratio and volume of the system, was used to obtain stress-strain curves and volume change-strain curves of composite systems under superposed hydrostatic pressure.

Changes in the force and the lateral dimension of a ring specimen were measured as it was stretched axially under a superposed hydrostatic pressure in order to calculate the mechanical properties mentioned above. A tensile tester was used which is capable of sealing the whole system to carry out a measurement under pressure. A thickness measuring device, based on the Hall effect, was built for the measurement of changes in the lateral dimension of a specimen.

The theoretical and experimental results of Young's modulus and stress-strain curves were compared and showed fairly good agreement.

The failure data were discussed in terms of failure surfaces, and it was concluded that a failure surface of the glass-bead-filled EPDM consists of two cones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aegagropila sauteri is a peculiar green algae, the branched thalli of which, according to the amount of growth, forms velvety spheres of a diameter of 3-4, sometimes to 5-6 cm. and bigger. Investigators attribute it to a special genus of green algae. The authors examine Aegagropila sauteri in Lake Markakol (Kazakhstan).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O comportamento de fases para sistemas binários com um hidrocarboneto leve e um pesado é muito importante tanto para o projeto real de um processo quanto para o desenvolvimento de modelos teóricos. Para atender a crescente demanda por informação experimental de equilíbrio de fases a altas pressões, o objetivo deste estudo é obter uma metodologia que substitua parcialmente ou maximize a pouca informação experimental disponível. Para isto propõe-se a modelagem do equilíbrio de fases em misturas de hidrocarboneto leve com um pesado, sem o conhecimento da estrutura molecular do pesado, inferindo-se os parâmetros do modelo a partir da modelagem de dados de ponto de bolha obtidos na literatura. Esta metodologia implica não só na descrição do equilíbrio de fases de um sistema como na estimação das propriedades críticas do pesado, de difícil obtenção devido ao craqueamento destes a altas temperaturas. Neste contexto, este estudo apresenta uma estratégia que estima indiretamente as propriedades críticas dos compostos pesados. Para isto, foram correlacionados dados experimentais de ponto de bolha de misturas binárias contendo um hidrocarboneto leve e um pesado, usando-se dois modelos: o de Peng-Robinson e o TPT1M (Teoria da Polimerização Termodinâmica de primeira ordem de Wertheim modificada). Os parâmetros ajustados com o modelo de Peng-Robinson correspondem diretamente às propriedades críticas do composto pesado, enquanto os ajustados com o modelo TPT1M foram usados para obtê-las. Esta estratégia fornece parâmetros dependentes do modelo, porém permite o cálculo de outras propriedades termodinâmicas, como a extrapolação da temperatura dos dados estudados. Além disso, acredita-se que a correlação dos parâmetros obtidos com as propriedades críticas disponíveis ajudará na caracterização de frações pesadas de composição desconhecida

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental investigation was made of forced convection film boiling of subcooled water around a sphere at atmospheric pressure. The water was sufficiently cool that the vapor condensed before leaving the film with the result that no vapor bubbles left the film. The experimental runs were made using inductively heated spheres at temperatures above 740°C. and using inlet water temperatures between 15°C. and 27°C. The spheres used had diameters of 1/2 inch, 9/16 inch, and 3/8 inch and were supported by the liquid flow. Reynolds numbers between 60 and 700 were used.

Analysis of the collected non-condensables indicated that oxygen and nitrogen dissolved in the water accumulated within the vapor film and that hetrogeneous chemical reactions occurred at the sphere surface. An iron-steam reaction resulted in more than 20% by volume hydrogen in the film at wall temperatures above 900°C. At temperatures near 1100°C. more than 80% by volume of the film was composed of hydrogen. It was found that gold plating of the sphere could eliminate this reaction.

Material and energy balances were used to derive equations which may be used to predict the overall average heat transfer coefficients for subcooled film boiling around a sphere. These equations include the effect of dissolved gases in the water. Equations also were derived which may be used to predict the composition of the film for cases in which an equilibrium exists between the dissolved gases and the gases in the film.

The derived equations were compared to the experimental results. It was found that a correlation existed between the Nusselt number for heat transfer from the vapor-liquid interface into the liquid and the Reynolds number, liquid Prandtl number product. In addition, it was found that the percentage of dissolved oxygen removed during the film boiling could be predicted to within 10%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of spheres in non-steady translational flow has been studied experimentally for values of Reynolds number from 0.2 to 3000. The aim of the work was to improve our qualitative understanding of particle transport in turbulent gaseous media, a process of extreme importance in power plants and energy transfer mechanisms.

Particles, subjected to sinusoidal oscillations parallel to the direction of steady translation, were found to have changes in average drag coefficient depending upon their translational Reynolds number, the density ratio, and the dimensionless frequency and amplitude of the oscillations. When the Reynolds number based on sphere diameter was less than 200, the oscillation had negligible effect on the average particle drag.

For Reynolds numbers exceeding 300, the coefficient of the mean drag was increased significantly in a particular frequency range. For example, at a Reynolds number of 3000, a 25 per cent increase in drag coefficient can be produced with an amplitude of oscillation of only 2 per cent of the sphere diameter, providing the frequency is near the frequency at which vortices would be shed in a steady flow at the mean speed. Flow visualization shows that over a wide range of frequencies, the vortex shedding frequency locks in to the oscillation frequency. Maximum effect at the natural frequency and lock-in show that a non-linear interaction between wake vortex shedding and the oscillation is responsible for the increase in drag.