928 resultados para Applications in Economics and Epidemiology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressed covariance sensing using quadratic samplers is gaining increasing interest in recent literature. Covariance matrix often plays the role of a sufficient statistic in many signal and information processing tasks. However, owing to the large dimension of the data, it may become necessary to obtain a compressed sketch of the high dimensional covariance matrix to reduce the associated storage and communication costs. Nested sampling has been proposed in the past as an efficient sub-Nyquist sampling strategy that enables perfect reconstruction of the autocorrelation sequence of Wide-Sense Stationary (WSS) signals, as though it was sampled at the Nyquist rate. The key idea behind nested sampling is to exploit properties of the difference set that naturally arises in quadratic measurement model associated with covariance compression. In this thesis, we will focus on developing novel versions of nested sampling for low rank Toeplitz covariance estimation, and phase retrieval, where the latter problem finds many applications in high resolution optical imaging, X-ray crystallography and molecular imaging. The problem of low rank compressive Toeplitz covariance estimation is first shown to be fundamentally related to that of line spectrum recovery. In absence if noise, this connection can be exploited to develop a particular kind of sampler called the Generalized Nested Sampler (GNS), that can achieve optimal compression rates. In presence of bounded noise, we develop a regularization-free algorithm that provably leads to stable recovery of the high dimensional Toeplitz matrix from its order-wise minimal sketch acquired using a GNS. Contrary to existing TV-norm and nuclear norm based reconstruction algorithms, our technique does not use any tuning parameters, which can be of great practical value. The idea of nested sampling idea also finds a surprising use in the problem of phase retrieval, which has been of great interest in recent times for its convex formulation via PhaseLift, By using another modified version of nested sampling, namely the Partial Nested Fourier Sampler (PNFS), we show that with probability one, it is possible to achieve a certain conjectured lower bound on the necessary measurement size. Moreover, for sparse data, an l1 minimization based algorithm is proposed that can lead to stable phase retrieval using order-wise minimal number of measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulation programs are essential tools for scientists and engineers to understand a particular system of interest. As expected, the complexity of the software increases with the depth of the model used. In addition to the exigent demands of software engineering, verification of simulation programs is especially challenging because the models represented are complex and ridden with unknowns that will be discovered by developers in an iterative process. To manage such complexity, advanced verification techniques for continually matching the intended model to the implemented model are necessary. Therefore, the main goal of this research work is to design a useful verification and validation framework that is able to identify model representation errors and is applicable to generic simulators. The framework that was developed and implemented consists of two parts. The first part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users to specify the invariants of a model under consideration. From the first-order logic specification, the FOLCSL translator automatically synthesizes a verification program that reads the event trace generated by a simulator and signals whether all invariants are respected. The second part consists of mining the temporal flow of events using a newly developed representation called State Flow Temporal Analysis Graph (SFTAG). While the first part seeks an assurance of implementation correctness by checking that the model invariants hold, the second part derives an extended model of the implementation and hence enables a deeper understanding of what was implemented. The main application studied in this work is the validation of the timing behavior of micro-architecture simulators. The study includes SFTAGs generated for a wide set of benchmark programs and their analysis using several artificial intelligence algorithms. This work improves the computer architecture research and verification processes as shown by the case studies and experiments that have been conducted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on advanced reconstruction methods and Dual Energy (DE) Computed Tomography (CT) applications for proton therapy, aiming at improving patient positioning and investigating approaches to deal with metal artifacts. To tackle the first goal, an algorithm for post-processing input DE images has been developed. The outputs are tumor- and bone-canceled images, which help in recognising structures in patient body. We proved that positioning error is substantially reduced using contrast enhanced images, thus suggesting the potential of such application. If positioning plays a key role in the delivery, even more important is the quality of planning CT. For that, modern CT scanners offer possibility to tackle challenging cases, like treatment of tumors close to metal implants. Possible approaches for dealing with artifacts introduced by such rods have been investigated experimentally at Paul Scherrer Institut (Switzerland), simulating several treatment plans on an anthropomorphic phantom. In particular, we examined the cases in which none, manual or Iterative Metal Artifact Reduction (iMAR) algorithm were used to correct the artifacts, using both Filtered Back Projection and Sinogram Affirmed Iterative Reconstruction as image reconstruction techniques. Moreover, direct stopping power calculation from DE images with iMAR has also been considered as alternative approach. Delivered dose measured with Gafchromic EBT3 films was compared with the one calculated in Treatment Planning System. Residual positioning errors, daily machine dependent uncertainties and film quenching have been taken into account in the analyses. Although plans with multiple fields seemed more robust than single field, results showed in general better agreement between prescribed and delivered dose when using iMAR, especially if combined with DE approach. Thus, we proved the potential of these advanced algorithms in improving dosimetry for plans in presence of metal implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea level rise and other effects of climate change on oceans and coasts around the world are major reasons to halt the emissions of greenhouse gases to the maximum extent. But historical emissions and sea level rise have already begun so steps to adapt to a world where shorelines, coastal populations, and economies could be dramatically altered are now essential. This presents significant economic challenges in four areas. (1) Large expenditures for adaptation steps may be required but the extent of sea level rise and thus the expenditures are unknowable at this point. Traditional methods for comparing benefits and costs are severely limited, but decisions must still be made. (2) It is not clear where the funding for adaptation will come from, which is a barrier to even starting planning. (3) The extent of economic vulnerability has been illustrated with assessments of risks to current properties, but these likely significantly understate the risks that lie in the future. (4) Market-based solutions to reducing climate change are now generally accepted, but their role in adaptation is less clear. Reviewing the literature addressing each of these points, this paper suggests specific strategies for dealing with uncertainty in assessing the economics of adaptation options, reviews the wide range of options for funding coastal adaption, identifies a number of serious deficiencies in current economic vulnerability studies, and suggests how market based approaches might be used in shaping adaptation strategies. The paper concludes by identifying a research agenda for the economics of coastal adaptation that, if completed, could significantly increase the likelihood of economically efficient coastal adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actinin and spectrin proteins are members of the Spectrin Family of Actin Crosslinking Proteins. The importance of these proteins in the cytoskeleton is demonstrated by the fact that they are common targets for disease causing mutations. In their most prominent roles, actinin and spectrin are responsible for stabilising and maintaining the muscle architecture during contraction, and providing shape and elasticity to the red blood cell in circulation, respectively. To carry out such roles, actinin and spectrin must possess important mechanical and physical properties. These attributes are desirable when choosing a building block for protein-based nanoconstruction. In this study, I assess the contribution of several disease-associated mutations in the actinin-1 actin binding domain that have recently been linked to a rare platelet disorder, congenital macrothrombocytopenia. I investigate the suitability of both actinin and spectrin proteins as potential building blocks for nanoscale structures, and I evaluate a fusion-based assembly strategy to bring about self-assembly of protein nanostructures. I report that the actinin-1 mutant proteins display increased actin binding compared to WT actinin-1 proteins. I find that both actinin and spectrin proteins exhibit enormous potential as nano-building blocks in terms of their stability and ability to self-assemble, and I successfully design and create homodimeric and heterodimeric bivalent building blocks using the fusion-based assembly strategy. Overall, this study has gathered helpful information that will contribute to furthering the advancement of actinin and spectrin knowledge in terms of their natural functions, and potential unnatural functions in protein nanotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a CoLab Workshop organized as an initiative of the UT Austin | Portugal Program to reinforce the Portuguese competences in Nonlinear Mechanics and in complex problems arising from applications to the mathematical modeling and simulations in the Life Sciences. The Workshop provides a place to exchange recent developments, discoveries and progresses in this challenging research field. The main goal is to bring together doctoral candidates, postdoctoral scientists and graduates interested in the field, giving them the opportunity to make scientific interactions and new connections with established experts in the interdisciplinary topics covered by the event. Another important goal of the Workshop is to promote collaboration between members of the different areas of the UT Austin | Portugal community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of three chapters. First and second chapter include original research papers with the focus of health behavior and refugee migration. In the context of a high-income developing country, Turkey, I provide new insights for the established policy discussions in the literature. Then, third chapter reviews the literature and perspectives on the determinants of attitude formation towards migration policy and migrants. This chapter extends the discussion in Chapter 2 and aims at understanding the reasons of recent global trends in anti-migration attitudes. In Chapter 1, I investigate the effects of education on the early investments of mothers in their children aged between 0-5. Exploiting a compulsory schooling reform, I document the causal effects of education on young mothers' health investments during pregnancy and postnatal period. Results suggest that there are positive effects on the use of health care services, while no effects on breast- feeding or vaccination take-ups. These results can be put into context through newly implemented Health Transformation Program in the country. I show that educated mothers use new services more and empowerment effects of the education have a role in the service use. This study gives important policy lessons to improve mothers' health care use and early child conditions in developing countries. In Chapter 2, I investigate the effects of refugee inflow on the voting behavior of natives. I use a novel data provided by a telecommunication company, focus on pre and post refugee inflow elections and investigate the vote share of the party announced "open-door" policy. Analysis suggests that although refugees and natives are culturally closer than the Western country contexts, small negative effects documented are likely be driven by non-economic reasons. These findings bring a new perspective to understand why anti-immigrant sentiments are easy to use and manipulate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD project has been mainly focused on the synthesis of novel organic compounds containing heterocyclic and/or carbocyclic scaffold and on the study of stearic acid derivatives and their applications in biological field. The synthesis of novel derivatives of 9-hydroxystearic acid (9-HSA) evidenced how the presence of substituents on C9, able to make hydrogen bonds is of crucial importance for the biological activity. Also the position of the hydroxy group along the chain of hydroxystearic acids was investigated: regioisomers with the hydroxy group bound to odd carbons resulted more active than those bearing the hydroxy group on even carbons. Further, the insertion of (R)-9-HSA in magnetic nanoparticles gave a novel material which characterization remarked its suitability for drug delivery. Structural hybrids between amino aza-heterocycles and azelaic acid have been synthesized and some of them showed a selective activity towards osteosarcoma cell line U2OS. Several Apcin analogues bearing indole, benzothiazole, benzofurazan moieties connected to tryptaminyl-, amino pyridinyl-, pyrimidinyl- and pyrazinyl ring through a 1,1,1-trichloroethyl group were synthesized. Biological tests showed the importance of both the tryptaminyl and the pyrimidinyl moieties, confirming the effectiveness against acute leukemia models. The SNAr between 2-aminothiazole derivatives and 7-chlorodinitrobenzofuroxan revealed different behaviour depending from amino substituent of the thiazole. The reaction with 2-N-piperidinyl-, 2-N-morpholinyl-, or 2-N-pyrrolidinyl thiazole gave two isomeric species derived from the attack on C-5 of thiazole ring. Thiazoles substituted with primary- or not-cyclic secondary amines reacted with the exocyclic amino nitrogen atom giving a series of compounds whose biological activity have highlighted as they might be promising candidates for further development of antitumor agents. A series of 9-fluorenylidene derivatives, of interest in medical and optoelectronic field as organic scintillators, was synthesized through Wittig or Suzuky reaction and will be analyzed to test their potential scintillatory properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research activity carried out in the Brasimone Research Center of ENEA concerns the development and mechanical characterization of steels conceived as structural materials for future fission reactors (Heavy Liquid Metal IV Generation reactors: MYRRHA and ALFRED) and for the future fusion reactor DEMO. Within this framework, two parallel lines of research have been carried out: (i) characterization in liquid lead of steels and weldings for the components of the IV Generation fission reactors (GIV) by means of creep and SSRT (Slow Strain Rate Tensile) tests; (ii) development and screening on mechanical properties of RAFM (Reduced Activation Ferritic Martensitic) steels to be employed as structural materials of the future DEMO fusion reactor. The doctoral work represents therefore a comprehensive report of the research carried out on nuclear materials both from the point of view of the qualification of existing (commercial) materials for their application in the typical environmental conditions of 4th generation fission reactors operating with lead as coolant, and from the point of view of the metallurgical study (with annexed microstructural and mechanical characterization of the selected compositions / Thermo Mechanical Treatment (TMT) options) of new compositional variants to be proposed for the “Breeding Blanket” of the future DEMO Fusion Reactor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presented study aimed to evaluate the productive and physiological behavior of a 2D multileader apple training systems in the Italian environment both investigating the possibility to increase yield and precision crop load management resolution. Another objective was to find valuable thinning thresholds guaranteeing high yields and matching fruit market requirements. The thesis consists in three studies carried out in a Pink Lady®- Rosy Glow apple orchard trained as a planar multileader training system (double guyot). Fruiting leaders (uprights) dimension, crop load, fruit quality, flower and physiological (leaf gas exchanges and fruit growth rate) data were collected and analysed. The obtained results found that uprights present dependence among each other and as well as a mutual support during fruit development. However, individual upright fruit load and upright’s fruit load distribution on the tree (~ plant crop load) seems to define both upright independence from the other, and single upright crop load effects on the final fruit quality production. Correlations between fruit load and harvest fruit size were found and thanks to that valuable thinning thresholds, based on different vegetative parameters, were obtained. Moreover, it comes out that an upright’s fruit load random distribution presents a widening of those thinning thresholds, keeping un-altered fruit quality. For this reason, uprights resulted a partially physiologically-dependent plant unit. Therefore, if considered and managed as independent, then no major problems on final fruit quality and production occurred. This partly confirmed the possibility to shift crop load management to single upright. The finding of the presented studies together with the benefits coming from multileader planar training systems suggest a high potentiality of the 2D multileader training systems to increase apple production sustainability and profitability for Italian apple orchard, while easing the advent of automation in fruit production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first chapter, “Political power and the influence of minorities: theory and evidence from Italy”, I analyze the relationship between minority and majority in politics, and how it can influence policy outcomes. I first present a theoretical model describing the possible consequences of an increase in a minority’s political power and show how it can increase difficulties in reaching a compromise on policy outcomes between parties. Furthermore, I empirically test these implications by exploiting the introduction in 2012 of a gender quota in Italian local elections: the increase in female politicians had heterogeneous effects on the level of funding for daycare, based on its differential effects on the share of women councillors. The second chapter, “Marriage patterns and the gender gap in labor force participation: evidence from Italy”, presents evidence highlighting a new possible determinant of the large gender gap in the Italian labor force: endogamy intensity. I argue that endogamy helps preserve social norms stigmatizing working women and reduces the probability of divorce, which disincentivizes women’s participation in the labor force. Endogamy is proxied by the degree of concentration of its surnames’ distribution, and I provide evidence that a more intense custom of endogamy contributed to enlarging gender participation gaps across Italian municipalities in 2001. The third chapter, “Information and quality of politicians: is transparency helping voters?”, studies how voting choices are affected by giving voters more personal information on candidates. I exploit the introduction of the “Spazzacorrotti” law in Italy in 2019, which imposed candidates at local elections to publish their CVs and criminal records before elections. I find no effects on elected candidates’ age, gender, educational level, or ideology. Moreover, I present anecdotal evidence that candidates with a criminal record received fewer votes on average, but only in the case of local media exposing it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a TCAD approach for the investigation of charge transport in amorphous silicon dioxide is presented for the first time. The proposed approach is used to investigate high-voltage silicon oxide thick TEOS capacitors embedded in the back-end inter-level dielectric layers for galvanic insulation applications. In the first part of this thesis, a detailed review of the main physical and chemical properties of silicon dioxide and the main physical models for the description of charge transport in insulators are presented. In the second part, the characterization of high-voltage MIM structures at different high-field stress conditions up to the breakdown is presented. The main physical mechanisms responsible of the observed results are then discussed in details. The third part is dedicated to the implementation of a TCAD approach capable of describing charge transport in silicon dioxide layers in order to gain insight into the microscopic physical mechanisms responsible of the leakage current in MIM structures. In particular, I investigated and modeled the role of charge injection at contacts and charge build-up due to trapping and de-trapping mechanisms in the oxide layer to the purpose of understanding its behavior under DC and AC stress conditions. In addition, oxide breakdown due to impact-ionization of carriers has been taken into account in order to have a complete representation of the oxide behavior at very high fields. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach. In the last part of the thesis, the proposed approach has been applied to simulate the breakdown in realistic structures under different stress conditions. The TCAD tool has been used to carry out a detailed analysis of the most relevant physical quantities, in order to gain a detailed understanding on the main mechanisms responsible for breakdown and guide design optimization.