893 resultados para Apoptosis . Autophagy . Diabetic retinopathy .
Resumo:
Melanoma, occurring as a rapidly progressive skin cancer, is resistant to current chemo- and radiotherapy, especially after metastases to distant organs has taken place. Most chemotherapeutic drugs exert their cytotoxic effect by inducing apoptosis, which, however, is often deficient in cancer cells. Thus, it is appropriate to attempt the targeting of alternative pathways, which regulate cellular viability. Recent studies of autophagy, a well-conserved cellular catabolic process, promise to improve the therapeutic outcome in melanoma patients. Although a dual role for autophagy in cancer therapy has been reported, both protecting against and promoting cell death, the potential for using autophagy in cancer therapy seems to be promising. Here, we review the recent literature on the role of autophagy in melanoma with respect to the expression of autophagic markers, the involvement of autophagy in chemo- and immunotherapy, as well as the role of autophagy in hypoxia and altered metabolic pathways employed for melanoma therapy.
Resumo:
A patient diagnosed with a glioma, generally, has an average of 14 months year to live after implementation of conventional therapies such as surgery, chemotherapy, and radiation. Glioblastomas are highly lethal because of their aggressive nature and resistance to conventional therapies and apoptosis. Thus other avenues of cell death urgently need to be explored. Autophagy, which is also known as programmed cell death type II, has recently been identified as an alternative mechanism to kill apoptosis- resistant cancer cells. Traditionally, researchers have studied how cells undergo autophagy during viral infection as an immune response mechanism, but recently researchers have discovered how viruses have evolved to manipulate autophagy for their benefit. Extensive studies of viral-induced autophagy provide a rationale to investigate other viruses, such as the adenovirus, which may be developed as part of a therapy against cancers resistant to apoptosis. Despite the present and relatively poor understanding of the mechanisms behind adenoviral-induced autophagy, adenovirus is a promising candidate, because of its ability to efficiently eradicate tumors. A better understanding of how the adenovirus induces autophagy will allow for the development of viruses with increased oncolytic potency. We hypothesized that adenovirus induces autophagy in order to aid in lysis. We found that replication, not infection, was required for adenovirus-mediated autophagy. Loss of function analysis of early genes revealed that, of the early genes tested, no single gene was sufficient to induce autophagy alone. Examination of cellular pathways for their role in autophagy during adenovirus infection revealed a function for the eIF2α pathway and more specifically the GCN2 kinase. Cells lacking GCN2 are more resistant to adenovirus-mediated autophagy in vitro; in vivo we also found these cells fail to undergo autophagy, but display more cell death. We believe that autophagy is a protective mechanism the cell employs during adenoviral infection, and in the in vivo environment, cells cannot recover from virus infection and are more susceptible to death. Congruently, infected cells deficient for autophagy through deletion of ATG5 are not able undergo productive cell lysis, providing evidence that the destruction of the cytoplasm and cell membrane through autophagy is crucial to the viral life cycle. This project is the first to describe a gene, other than a named autophagy gene, to be required for adenovirus- mediated autophagy. It is also the first to examine autophagic cell death as a means to aid in viral-induced cell lysis.
Resumo:
A patient diagnosed with a glioma, generally, has an average of 14 months year to live after implementation of conventional therapies such as surgery, chemotherapy, and radiation. Glioblastomas are highly lethal because of their aggressive nature and resistance to conventional therapies and apoptosis. Thus other avenues of cell death urgently need to be explored. Autophagy, which is also known as programmed cell death type II, has recently been identified as an alternative mechanism to kill apoptosis- resistant cancer cells. Traditionally, researchers have studied how cells undergo autophagy during viral infection as an immune response mechanism, but recently researchers have discovered how viruses have evolved to manipulate autophagy for their benefit. Extensive studies of viral-induced autophagy provide a rationale to investigate other viruses, such as the adenovirus, which may be developed as part of a therapy against cancers resistant to apoptosis. Despite the present and relatively poor understanding of the mechanisms behind adenoviral-induced autophagy, adenovirus is a promising candidate, because of its ability to efficiently eradicate tumors. A better understanding of how the adenovirus induces autophagy will allow for the development of viruses with increased oncolytic potency. We hypothesized that adenovirus induces autophagy in order to aid in lysis. We found that replication, not infection, was required for adenovirus-mediated autophagy. Loss of function analysis of early genes revealed that, of the early genes tested, no single gene was sufficient to induce autophagy alone. Examination of cellular pathways for their role in autophagy during adenovirus infection revealed a function for the eIF2α pathway and more specifically the GCN2 kinase. Cells lacking GCN2 are more resistant to adenovirus-mediated autophagy in vitro; in vivo we also found these cells fail to undergo autophagy, but display more cell death. We believe that autophagy is a protective mechanism the cell employs during adenoviral infection, and in the in vivo environment, cells cannot recover from virus infection and are more susceptible to death. Congruently, infected cells deficient for autophagy through deletion of ATG5 are not able undergo productive cell lysis, providing evidence that the destruction of the cytoplasm and cell membrane through autophagy is crucial to the viral life cycle. This project is the first to describe a gene, other than a named autophagy gene, to be required for adenovirus- mediated autophagy. It is also the first to examine autophagic cell death as a means to aid in viral-induced cell lysis.
Resumo:
Autophagy has been demonstrated to have an essential function in several cellular hematopoietic differentiation processes, for example, the differentiation of reticulocytes. To investigate the role of autophagy in neutrophil granulopoiesis, we studied neutrophils lacking autophagy-related (Atg) 5, a gene encoding a protein essential for autophagosome formation. Using Cre-recombinase mediated gene deletion, Atg5-deficient neutrophils showed no evidence of abnormalities in morphology, granule protein content, apoptosis regulation, migration, or effector functions. In such mice, however, we observed an increased proliferation rate in the neutrophil precursor cells of the bone marrow as well as an accelerated process of neutrophil differentiation, resulting in an accumulation of mature neutrophils in the bone marrow, blood, spleen, and lymph nodes. To directly study the role of autophagy in neutrophils, we employed an in vitro model of differentiating neutrophils that allowed modulating the levels of ATG5 expression, or, alternatively, intervening pharmacologically with autophagy-regulating drugs. We could show that autophagic activity correlated inversely with the rate of neutrophil differentiation. Moreover, pharmacological inhibition of p38 MAPK or mTORC1 induced autophagy in neutrophilic precursor cells and blocked their differentiation, suggesting that autophagy is negatively controlled by the p38 MAPK-mTORC1 signaling pathway. On the other hand, we obtained no evidence for an involvement of the PI3K-AKT or ERK1/2 signaling pathways in the regulation of neutrophil differentiation. Taken together, these findings show that, in contrast to erythropoiesis, autophagy is not essential for neutrophil granulopoiesis, having instead a negative impact on the generation of neutrophils. Thus, autophagy and differentiation exhibit a reciprocal regulation by the p38-mTORC1 axis.
Resumo:
All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously.
Resumo:
We have previously shown that human munc13 (hmunc13) is up-regulated by hyperglycemia under in vitro conditions in human mesangial cell cultures. The purpose of the present study was to determine the cellular function of hmunc13. To do this, we have investigated the subcellular localization of hmunc13 in a transiently transfected renal cell line, opossum kidney cells. We have found that hmunc13 is a cytoplasmic protein and is translocated to the Golgi apparatus after phorbol ester stimulation. In addition, cells transfected with hmunc13 demonstrate apoptosis after treatment with phorbol ester, but cells transfected with an hmunc13 deletion mutant in which the diacylglycerol (C1) binding domain is absent exhibit no change in intracellular distribution and no induction of apoptosis in the presence of phorbol ester stimulation. We conclude that both the diacylglycerol-induced translocation and the apoptosis represent functional activity of hmunc13. We have also demonstrated that munc13-1 and munc13-2 are localized mainly to cortical epithelial cells in rat kidney and both are overexpressed under conditions of hyperglycemia in a streptozotocin-treated diabetic rat model. Taken together, our data suggest that hmunc13 serves as a diacylglycerol-activated, PKC-independent signaling pathway capable of inducing apoptosis and that this pathway may contribute to the renal cell complications of hyperglycemia.
Resumo:
Purpose. Postnatal exposure to hyperoxia destroys the plexiform layers of the neonatal rat retina, resulting in significant electroretinographic anomalies. The purpose of this study was to identify the mechanisms at the origin of this loss. Methods. Sprague-Dawley (SD) and Long Evans (LE) rats were exposed to hyperoxia from birth to postnatal day (P) 6 or P14 and from P6 to P14, after which rats were euthanatized at P6, P14, or P60. Results. At P60, synaptophysin staining confirmed the lack of functional synaptic terminals in SD (outer plexiform layer [OPL]) and LE (OPL and inner plexiform layer [IPL]) rats. Uneven staining of ON-bipolar cell terminals with mGluR6 suggests that their loss could play a role in OPL thinning. Protein kinase C(PKC)-α and recoverin (rod and cone ON-bipolar cells, respectively) showed a lack of dendritic terminals in the OPL with disorganized axonal projections in the IPL. Although photoreceptor nuclei appeared intact, a decrease in bassoon staining (synaptic ribbon terminals) suggests limited communication to the inner retina. Findings were significantly more pronounced in LE rats. An increase in TUNEL-positive cells was observed in LE (inner nuclear layer [INL] and outer nuclear layer [ONL]) and SD (INL) rats after P0 to P14 exposure (425.3%, 102.2%, and 146.3% greater than control, respectively [P < 0.05]). Conclusions. Results suggest that cell death and synaptic retraction are at the root of OPL thinning. Increased TUNEL-positive cells in the INL confirm that cells die, at least in part, because of apoptosis. These findings propose a previously undescribed mechanism of cell death and synaptic retraction that are likely at the origin of the functional consequences of hyperoxia.
Resumo:
Aim: Vascular disease such as cardiovascular and cerebrovascular diseases, or retinopathy, nephropathy and neuropathy are common in diabetes. Maturity - onset diabetes of the young (MODY) describes a clinically heterogeneous group of familial diabetes characterized by monogenic, autosomal dominant inheritance that generally results from beta cell dysfunction. This study aims to assess the presence of vascular complications on Portuguese patients with a clinical diagnosis of MODY.
Resumo:
Glomerulosclerosis of any cause is characterized by loss of functional glomerular cells and deposition of excessive amounts of interstitial collagens including collagen I. We have previously reported that mesangial cell attachment to collagen I leads to upregulation of Hic-5 in vitro, which mediates mesangial cell apoptosis. Furthermore, glomerular Hic-5 expression was increased during the progression of experimental glomerulosclerosis. We hypothesized that reducing collagen I accumulation in glomerulosclerosis would in turn lower Hic-5 expression, reducing mesangial cell apoptosis, and thus maintaining glomerular integrity. We examined archive renal tissue from rats undergoing experimental diabetic glomerulosclerosis, treated with the transglutaminase-2 inhibitor NTU281. Untreated animals exhibited increased glomerular collagen I accumulation, associated with increased glomerular Hic-5 expression, apoptosis, and mesangial myofibroblast transdifferentiation characterized by a-smooth muscle actin (a-SMA) expression. NTU281 treatment reduced glomerular collagen I accumulation, Hic-5 and a-SMA expression, and apoptosis. Proteinurea and serum creatinine levels were significantly reduced in animals with reduced Hic-5 expression. In vitro studies of Hic-5 knockdown or overexpression show that mesangial cell apoptosis and expression of both a-SMA and collagen I are Hic-5 dependent. Together, these data suggest that there exists, in vitro and in vivo, a positive feedback loop whereby increased levels of collagen I lead to increased mesangial Hic-5 expression favoring not only increased apoptosis, but also mesangial myofibroblast transdifferentiation and increased collagen I expression. Prevention of collagen I accumulation interrupts this Hic-5-dependent positive feedback loop, preserving glomerular architecture, cellular phenotype, and function. © 2013 USCAP, Inc All rights reserved.
Resumo:
Résumé : La maladie osseuse de Paget (MP) est un désordre squelettique caractérisé par une augmentation focale et désorganisée du remodelage osseux. Les ostéoclastes (OCs) de MP sont plus larges, actifs et nombreux, en plus d’être résistants à l’apoptose. Même si la cause précise de la MP demeure inconnue, des mutations du gène SQSTM1, codant pour la protéine p62, ont été décrites dans une proportion importante de patients avec MP. Parmi ces mutations, la substitution P392L est la plus fréquente, et la surexpression de p62P392L dans les OCs génère un phénotype pagétique partiel. La protéine p62 est impliquée dans de multiples processus, allant du contrôle de la signalisation NF-κB à l’autophagie. Dans les OCs humains, un complexe multiprotéique composé de p62 et des kinases PKCζ et PDK1 est formé en réponse à une stimulation par Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL), principale cytokine impliquée dans la formation et l'activation des OCs. Nous avons démontré que PKCζ est impliquée dans l’activation de NF-κB induite par RANKL dans les OCs, et dans son activation constitutive en présence de p62P392L. Nous avons également observé une augmentation de phosphorylation de Ser536 de p65 par PKCζ, qui est indépendante d’IκB et qui pourrait représenter une voie alternative d'activation de NF-κB en présence de la mutation de p62. Nous avons démontré que les niveaux de phosphorylation des régulateurs de survie ERK et Akt sont augmentés dans les OCs MP, et réduits suite à l'inhibition de PDK1. La phosphorylation des substrats de mTOR, 4EBP1 et la protéine régulatrice Raptor, a été évaluée, et une augmentation des deux a été observée dans les OCs pagétiques, et est régulée par l'inhibition de PDK1. Également, l'augmentation des niveaux de base de LC3II (associée aux structures autophagiques) observée dans les OCs pagétiques a été associée à un défaut de dégradation des autophagosomes, indépendante de la mutation p62P392L. Il existe aussi une réduction de sensibilité à l’induction de l'autophagie dépendante de PDK1. De plus, l’inhibition de PDK1 induit l’apoptose autant dans les OCs contrôles que pagétiques, et mène à une réduction significative de la résorption osseuse. La signalisation PDK1/Akt pourrait donc représenter un point de contrôle important dans l’activation des OCs pagétiques. Ces résultats démontrent l’importance de plusieurs kinases associées à p62 dans la sur-activation des OCs pagétiques, dont la signalisation converge vers une augmentation de leur survie et de leur fonction de résorption, et affecte également le processus autophagique.
Resumo:
Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in human diseases. It is a highly conserved intracellular degradation system in eukaryotes for removal and recycling of cytoplasmic components including damaged proteins and organelles to obtain energy. The relationship between cancer and autophagy has been extensively studied in recent years. In cancer and cancer therapy, autophagy acts as a double-edged sword. Photodynamic therapy (PDT) is a kind of tumor therapy applied with a tumor-localizing photosensitizing agent which is followed by activation with the light of a specific wavelength. How much is autophagy involved in photodynamic therapy? The work in this area is still limited.
Resumo:
Bananas are susceptible to a diverse range of biotic and abiotic stresses, many of which cause serious production constraints worldwide. One of the most destructive banana diseases is Fusarium wilt caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense (Foc). No effective control strategy currently exists for this disease which threatens global banana production. Although disease resistance exists in some wild bananas, attempts to introduce resistance into commercially acceptable bananas by conventional breeding have been hampered by low fertility, long generation times and association of poor agronomical traits with resistance genes. With the advent of reliable banana transformation protocols, molecular breeding is now regarded as a viable alternative strategy to generate disease-resistant banana plants. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi. Further, the transgenic plants showed increased resistance to a range of abiotic stresses. In this thesis, the use of anti-apoptosis genes to generate transgenic banana plants with resistance to Fusarium wilt was investigated. Since water stress is an important abiotic constraint to banana production, the resistance of the transgenic plants to water stress was also examined. Embryogenic cell suspensions (ECS) of two commercially important banana cultivars, Grand Naine (GN) and Lady Finger (LF), were transformed using Agrobacterium with the anti-apoptosis genes, Bcl-xL, Bcl-xL G138A, Ced-9 and Bcl- 2 3’ UTR. An interesting, and potentially important, outcome was that the use of anti-apoptosis genes resulted in up to a 50-fold increase in Agrobacterium-mediated transformation efficiency of both LF and GN cells over vector controls. Regenerated plants were subjected to a complete molecular characterisation in order to detect the presence of the transgene (PCR), transcript (RT-PCR) and gene product (Western blot) and to determine the gene copy number (Southern blot). A total of 36 independently-transformed GN lines (8 x Bcl-xL, 5 x Bcl-xL G138A, 15 x Ced-9 and 8 x Bcl-2 3’ UTR) and 41 independently-transformed LF lines (8 x Bcl-xL, 7 x BclxL G138A, 13 x Ced-9 and 13 x Bcl-2 3’ UTR) were identified. The 41 transgenic LF lines were multiplied and clones from each line were acclimatised and grown under glasshouse conditions for 8 weeks to allow monitoring for phenotypic abnormalities. Plants derived from 3 x Bcl-xL, 2 x Ced-9 and 5 x Bcl-2 3’ UTR lines displayed a variety of aberrant phenotypes. However, all but one of these abnormalities were off-types commonly observed in tissue-cultured, non-transgenic banana plants and were therefore unlikely to be transgene-related. Prior to determining the resistance of the transgenic plants to Foc race 1, the apoptotic effects of the fungus on both wild-type and Bcl-2 3’ UTR-transgenic LF banana cells were investigated using rapid in vitro root assays. The results from these assays showed that apoptotic-like cell death was elicited in wild-type banana root cells as early as 6 hours post-exposure to fungal spores. In contrast, these effects were attenuated in the root cells of Bcl-2 3’ UTR-transgenic lines that were exposed to fungal spores. Thirty eight of the 41 transgenic LF lines were subsequently assessed for resistance to Foc race 1 in small-plant glasshouse bioassays. To overcome inconsistencies in rating the internal (vascular discolouration) disease symptoms, a MatLab-based computer program was developed to accurately and reliably assess the level of vascular discolouration in banana corms. Of the transgenic LF banana lines challenged with Foc race 1, 2 x Bcl-xL, 3 x Ced-9, 2 x Bcl-2 3’ UTR and 1 x Bcl-xL G138A-transgenic line were found to show significantly less external and internal symptoms than wild-type LF banana plants used as susceptible controls at 12 weeks post-inoculation. Of these lines, Bcl-2 3’ UTR-transgenic line #6 appeared most resistant, displaying very mild symptoms similar to the wild-type Cavendish banana plants that were included as resistant controls. This line remained resistant for up to 23 weeks post-inoculation. Since anti-apoptosis genes have been shown to confer resistance to various abiotic stresses in other crops, the ability of these genes to confer resistance against water stress in banana was also investigated. Clonal plants derived from each of the 38 transgenic LF banana plants were subjected to water stress for a total of 32 days. Several different lines of transgenic plants transformed with either Bcl-xL, Bcl-xL G138A, Ced-9 or Bcl-2 3’ UTR showed a delay in visual water stress symptoms compared with the wild-type control plants. These plants all began producing new growth from the pseudostem following daily rewatering for one month. In an attempt to determine whether the protective effect of anti-apoptosis genes in transgenic banana plants was linked with reactive oxygen species (ROS)-associated programmed cell death (PCD), the effect of the chloroplast-targeting, ROS-inducing herbicide, Paraquat, on wild-type and transgenic LF was investigated. When leaf discs from wild-type LF banana plants were exposed to 10 ìM Paraquat, complete decolourisation occurred after 48 hours which was confirmed to be associated with cell death and ROS production by trypan blue and 3,3-diaminobenzidine (DAB) staining, respectively. When leaf discs from the transgenic lines were exposed to Paraquat, those derived from some lines showed a delay in decolourisation, suggesting only a weak protective effect from the transgenes. Finally, the protective effect of anti-apoptosis genes against juglone, a ROS-inducing phytotoxin produced by the causal agent of black Sigatoka, Mycosphaerella fijiensis, was investigated. When leaf discs from wild-type LF banana plants were exposed to 25 ppm juglone, complete decolourisation occurred after 48 hours which was again confirmed to be associated with cell death and ROS production by trypan blue and DAB staining, respectively. Further, TdT-mediated dUTP nick-end labelling (TUNEL) assays on these discs suggested that the cell death was apoptotic. When leaf discs from the transgenic lines were exposed to juglone, discs from some lines showed a clear delay in decolourisation, suggesting a protective effect. Whether these plants are resistant to black Sigatoka is unknown and will require future glasshouse and field trials. The work presented in this thesis provides the first report of the use of anti-apoptosis genes as a strategy to confer resistance to Fusarium wilt and water stress in a nongraminaceous monocot, banana. Such a strategy may be exploited to generate resistance to necrotrophic pathogens and abiotic stresses in other economically important crop plants.
Resumo:
In both developed and developing countries, increased prevalence of obesity has been strongly associated with increased incidence of type 2 diabetes mellitus (T2DM) in the adult population. Previous research has emphasized the importance of physical activity in the prevention and management of obesity and T2DM, and generic exercise guidelines originally developed for the wider population have been adapted for these specific populations. However, the guidelines traditionally focus on aerobic training without due consideration to other exercise modalities. Recent reviews on resistance training in the T2DM population have not compared this modality with others including aerobic training, or considered the implications of resistance training for individuals suffering from both obesity and T2DM. In short, the optimal mix of exercise modalities in the prescription of exercise has not been identified for it benefits to the metabolic, body composition and muscular health markers common in obesity and T2DM. Similarly, the underlying physical, social and psychological barriers to adopting and maintaining exercise, with the potential to undermine the efficacy of exercise interventions, have not been addressed in earlier reviews. Because it is well established that aerobic exercise has profound effects on obesity and T2DM risk, the purpose of this review was to address the importance of resistance training to obese adults with T2DM.
Resumo:
The formation of hypertrophic scars is a frequent medical outcome of wound repair and often requires further therapy with treatments such as Silicone Gel Sheets (SGS) or apoptosis-inducing agents, including bleomycin. Although widely used, knowledge regarding SGS and their mode of action is limited. Preliminary research has shown that small amounts of amphiphilic silicone present in SGS have the ability to move into skin during treatment. We demonstrate herein that a commercially available analogue of these amphiphilic siloxane species, the rake copolymer GP226, decreases collagen synthesis upon exposure to cultures of fibroblasts derived from hypertrophic scars (HSF). By size exclusion chromatography, GP226 was found to be a mixture of siloxane species, containing five fractions of different molecular weight. By studies of collagen production, cell viability and proliferation, it was revealed that a low molecular weight fraction (fraction IV) was the most active, reducing the number of viable cells present following treatment and thereby reducing collagen production as a result. Upon exposure of fraction IV to human keratinocytes, viability and proliferation was also significantly affected. HSF undergoing apoptosis after application of fraction IV were also detected via real-time microscopy and by using the TUNEL assay. Taken together, these data suggests that these amphiphilic siloxanes could be potential non-invasive substitutes to apoptotic-inducing chemical agents that are currently used as scar treatments.