942 resultados para Antigen prostàtic específic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic hepatitis C virus (HCV) infection is a worldwide health problem that may evolve to cirrhosis and hepatocellular carcinoma. Incompletely understood immune system mechanisms have been associated with impaired viral clearance. The nonclassical class I human leukocyte antigen G (HLA-G) molecule may downregulate immune system cell functions exhibiting well-recognized tolerogenic properties. HCV genotype was analyzed in chronic HCV-infected patients. Because HLA-G expression may be induced by certain viruses, we evaluated the presence of HLA-G in the liver microenvironment obtained from 89 biopsies of patients harboring chronic HCV infection and stratified according to clinical and histopathological features. Overall, data indicated that HCV genotype 1 was predominant, especially subgenotype 1a, with a prevalence of 87%. HLA-G expression was observed in 45(51%) liver specimens, and it was more frequent in milder stages of chronic hepatitis (67.4%) than in moderate (27.8%; p = 0.009) and severe (36.0%; p = 0.021) stages of the disease. Altogether, these results suggest that the expression of HLA-G in the context of HCV is a complex process modulated by many factors, which may contribute to an immunologic environment favoring viral persistence. However, because the milder forms predominantly expressed HLA-G, a protective role of this molecule may not be excluded. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human leukocyte antigen-G (FILA-G) plays a well-recognized role in the modulation of the immune response, and HLA-G expression has been associated with increased graft survival and decreased rejection episodes. To investigate the role of the HLA-G 3' untranslated region (3'UTR) in renal transplantation, we evaluated several polymorphic sites (14-bp Del/Ins +3003T/C, +3010C/G, +3027C/A, +3035C/T, +3142G/C, and +3187A/G) in patients exhibiting or not exhibiting rejection episodes. A total of 104 patients (15 with acute and 48 with chronic rejection, and 41 with no rejection) and 142 healthy individuals were studied. HLA-G 3'UTR was typed by direct sequencing. The +3035C-C genotype was more frequent in patients exhibiting chronic rejection compared with healthy controls, and the +3035C-T genotype was less frequent in chronic rejection compared with patients without rejection (acute plus chronic) or compared with healthy controls. The +3187G-A genotype, in which the A allele is associated with increased mRNA degradation, showed increased frequency in the rejection group (acute plus chronic) when compared with healthy controls. The 14 base pair Deletion/Insertion genotype was marginally increased in patients with acute rejection. This is the first study to show associations among numerous polymorphic sites in the HLA-G 3'UTR in kidney allotransplantation, which may contribute to the understanding of HLA-G post-transcriptional mechanisms. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca2+. Recent crystal structures have been obtained for the protein in the apo-and Ca2+-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca2+ and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca2+ binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca2+ affinity as the wild-type protein. We then evaluated if Ca2+ binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca2+ ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human endogenous retroviruses (HERVs) arise from ancient infections of the host germline cells by exogenous retroviruses, constituting 8% of the human genome. Elevated level of envelope transcripts from HERVs-W has been detected in CSF, plasma and brain tissues from patients with Multiple Sclerosis (MS), most of them from Xq22.3, 15q21.3, and 6q21 chromosomes. However, since the locus Xq22.3 (ERVWE2) lack the 5' LTR promoter and the putative protein should be truncated due to a stop codon, we investigated the ERVWE2 genomic loci from 84 individuals, including MS patients with active HERV-W expression detected in PBMC. In addition, an automated search for promoter sequences in 20 kb nearby region of ERVWE2 reference sequence was performed. Several putative binding sites for cellular cofactors and enhancers were found, suggesting that transcription may occur via alternative promoters. However, ERVWE2 DNA sequencing of MS and healthy individuals revealed that all of them harbor a stop codon at site 39, undermining the expression of a full-length protein. Finally, since plaque formation in central nervous system (CNS) of MS patients is attributed to immunological mechanisms triggered by autoimmune attack against myelin, we also investigated the level of similarity between envelope protein and myelin oligodendrocyte glycoprotein (MOG). Comparison of the MOG to the envelope identified five retroviral regions similar to the Ig-like domain of MOG. Interestingly, one of them includes T and B cell epitopes, capable to induce T effector functions and circulating Abs in rats. In sum, although no DNA substitutions that would link ERVWE2 to the MS pathogeny was found, the similarity between the envelope protein to MOG extends the idea that ERVEW2 may be involved on the immunopathogenesis of MS, maybe facilitating the MOG recognizing by the immune system. Although awaiting experimental evidences, the data presented here may expand the scope of the endogenous retroviruses involvement on MS pathogenesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the impact of the routine use of rapid antigen detection test in the diagnosis and treatment of acute pharyngotonsillitis in children. METHODS: This is a prospective and observational study, with a protocol compliance design established at the Emergency Unit of the University Hospital of Universidade de São Paulo for the care of children and adolescents diagnosed with acute pharyngitis. RESULTS: 650 children and adolescents were enrolled. Based on clinical findings, antibiotics would be prescribed for 389 patients (59.8%); using the rapid antigen detection test, they were prescribed for 286 patients (44.0%). Among the 261 children who would not have received antibiotics based on the clinical evaluation, 111 (42.5%) had positive rapid antigen detection test. The diagnosis based only on clinical evaluation showed 61.1% sensitivity, 47.7% specificity, 44.9% positive predictive value, and 57.5% negative predictive value. CONCLUSIONS: The clinical diagnosis of streptococcal pharyngotonsillitis had low sensitivity and specificity. The routine use of rapid antigen detection test led to the reduction of antibiotic use and the identification of a risk group for complications of streptococcal infection, since 42.5% positive rapid antigen detection test patients would not have received antibiotics based only on clinical diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The humoral immune response is dependent on the formation of antibodies. Antibodies are produced by terminally differentiated B cells, plasma cells. Plasma cells are generated either directly from antigen challenged B cells, memory cells or from cells that have undergone the germinal center (GC) reaction. The GC is the main site for class switch, somatic hypermutation and generation of memory cells. Different factors, both internal and external, shape the outcome of the immune response. In this thesis, we have studied a few factors that influence the maturation of the humoral response. We have studied how age affects the response, and we show that responses against thymus dependent antigens (TD) are more affected than responses to thymus independent (TI) antigens, in concordance with the view that the T cell compartment is more affected by age than the B cell compartment. Furthermore, we demonstrate that priming early in life have a big influence on the immune response in the aged individual. Priming with a TI form of the carbohydrate dextran B512 (Dx) induces a reduction of IgG levels in later TD responses against Dx. We have evaluated possible mechanisms for this reduction. The reduction does not seem to be caused by clonal exhaustion or antibody mediated mechanisms. We also showed that the reduced TD response after TI priming can be induced against another molecule than Dx. With the hypothesis that TI antigens induce a plasma cell biased maturation of the responding B cells, we examined the presence of Blimp-1, a master regulator of plasma cell differentiation, in GCs induced by TD and TI antigen. Blimp-1 was found earlier in GCs induced by TI antigen and the staining intensity in these GCs was stronger than in TD antigen induced GCs, indicating that plasma cells might be continuously recruited from these GCs. B cells undergoing the GC reaction are thought to be under a strict selection pressure that removes cells with low affinity for the antigen and also cells that have acquired self-reactivity. We investigated the effect of apoptotic deficiencies on the accumulation of somatic mutations in GC B cells. In mice lacking the death receptor Fas, lpr mice, the frequency of mutations was increased but the pattern of the mutations did not differ from wild type mice. In contrast, mice over-expressing the anti-apoptotic protein Bcl-2, had a lowered frequency of mutations and the mutations introduced had other characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioinformatic analysis of Group A Streptococcus (GAS) genomes aiming at the identification of new vaccine antigens, revealed the presence of a gene coding for a putative surface-associated protein, named GAS40, inducing protective antibodies in an animal model of sepsis. The aim of our study was to unravel the involvement of GAS40 in cell division processes and to identify the putative interactor. Firstly, bioinformatic analysis showed that gas40 shares homology with ezrA, a gene coding for a negative regulator of Z-ring formation during cell division process. Both scanning and transmission electron microscopy indicated morphological differences between wild-type and the GAS40 knock-out mutant strain, with the latter showing an impaired capacity to divide resulting in the formation of very long chains. Moreover, when the localization of the antigen on the bacterial surface was analyzed, we found that in bacteria grown at exponential phase GAS40 specifically localized at septum, indicating a possible role in cell division. Furthermore, by ELISA and co-sedimentation assays, we found that GAS40 is able to interact with FtsZ, a protein involved in Z-ring formation during cell division process. These data together with the co-localization of GAS40/FtsZ at bacterial septum demonstrated by by confocal microscopy, strongly support the hypothesis for a key role of GAS40 in bacterial cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humane Nierenzellkarzinom-(NZK)-Zelllinien wurden etabliert, um sie zur Generierung von autologen zytotoxischen T-Zelllinien einzusetzen. Erst nach Modifikation mit dem kostimulierenden B7-1-Molekül wurden mit der NZK-Zelllinie MZ1257RC autologe, tumorspezifische T-Zelllinien generiert und charakterisiert. Die Aufklärung eines T-Zell-definierten TAA eines autologen, zytotoxischen T Zellklons wurde mittels Expressionsklonierung einer hergestellten cDNS-Expressionsbank begonnen. Nach in vitro-Sensibilisierung von peripheren Blutmonozyten mit der autologen NZK-Zelllinie MZ2733RC wurde die HLA-Klasse I-restringierte T Zelllinie XIE6 generiert, die die autologe und verschiedene allogene NZK- sowie Zervixkarzinom-Zelllinien, jedoch nicht autologe Nierenzellen lysiert. Die T Zellen exprimieren TZR Vβ13.6-Ketten und sezernieren GM-CSF und IL-10 nach Antigenstimulation. Jedoch ist die NZK-Zelllinie MZ2733RC wenig sensitiv gegenüber autologen und allogenen Effektorzellen. Erst die Blockade ihrer HLA Klasse I-Moleküle auf der Zelloberfläche erhöht ihre Sensitivität gegenüber allogenen lymphokin-aktivierten Killer-Zellen. Verantwortlich dafür können nicht-klassische HLA Klasse Ib-Moleküle, insbesondere HLA-G sein, dessen Transkripte in der RNS der NZK-Zellen, jedoch nicht in Nierenzellen detektiert wurden. In einer detaillierten Studie wurden HLA-G-Transkripte in NZK-Zelllinien (58%), in NZK-Biopsien (80%), und nur in wenigen Nierenepithelbiopsien (10%) nachgewiesen. In der NZK-Zelllinie MZ2733RC wurde eine konstitutive HLA-G1-Proteinexpression beobachtet, die durch eine IFN-γ-Behandlung induzierbar ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptides presented by MHC class I molecules for CTL recognition are derived mainly from cytosolic proteins. For antigen presentation on the cell surface, epitopes require correct processing by cytosolic and ER proteases, efficient TAP transport and MHC class I binding affinity. The efficiency of epitope generation depends not only on the epitope itself, but also on its flanking regions. In this project, the influence of the C-terminal region of the model epitope SIINFEKL (S8L) from chicken ovalbumin (aa 257-264) on antigen processing has been investigated. S8L is a well characterized epitope presented on the murine MHC class I molecule, H-2Kb. The Flp-In 293Kb cell line was transfected with different constructs each enabling the expression of the S8L sequence with different defined C-terminal flanking regions. The constructs differed at the two first C-terminal positions after the S8L epitope, so called P1’ and P2’. At these sites, all 20 amino acids were exchanged consecutively and tested for their influence on H-2Kb/S8L presentation on the cell surface of the Flp-In 293Kb cells. The detection of this complex was performed by immunostaining and flow cytometry. The prevailing assumption is that proteasomal cleavages are exclusively responsible for the generation of the final C-termini of CTL epitopes. Nevertheless, recent publications showed that TPPII (tripeptidyl peptidase II) is required for the generation of the correct C-terminus of the HLA-A3-restricted HIV epitope Nef(73-82). With this background, the dependence of the S8L generation on proteasomal cleavage of the designed constructs was characterized using proteasomal inhibitors. The results obtained indicate that it is crucial for proteasomal cleavage, which amino acid is flanking the C-terminus of an epitope. Furthermore, partially proteasome independent S8L generation from specific S8L-precursor peptides was observed. Hence, the possibility of other existing endo- or carboxy-peptidases in the cytosol that could be involved in the correct trimming of the C-terminus of antigenic peptides for MHC class I presentation was investigated, performing specific knockdowns and using inhibitors against the target peptidases. In parallel, a purification strategy to identify the novel peptidase was established. The purified peaks showing an endopeptidase activity were further analyzed by mass spectrometry and some potential peptidases (like e.g. Lon) were identified, which have to be further characterized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by genetically diverse Neisseria meningitidis strains and is an antigen of the multicomponent protein-based 4CMenB vaccine, able to induce bactericidal antibodies in humans and to bind heparin-like molecules. The aim of this study is to characterize the immunological and functional properties of NHBA. To evaluate immunogenicity and the contribution of aminoacid sequence variability to vaccine coverage, we constructed recombinant isogenic strains that are susceptible to bactericidal killing only by anti-NHBA antibodies and engineered them to express equal levels of selected NHBA peptides. In these recombinant strains, we observed different titres associated with the different peptide variants. These recombinant strains were then further engineered to express NHBA chimeric proteins to investigate the regions important for immunogenicity. In natural strains, anti-NHBA antibodies were found to be cross-protective against strains expressing different peptides. To investigate the functional properties of this antigen, the recombinant purified NHBA protein was tested in in vitro binding studies and was found to be able to bind epithelial cells. The binding was abolished when cells were treated specifically with heparinase III, suggesting that the interaction with the cells is mediated by heparan sulfate proteoglycans (HSPG). Mutation of the Arg-rich tract of NHBA abrogated the binding, confirming the importance of this region in mediating the binding to heparin-like molecules. In a panel of N. meningitidis strains, the deletion of nhba resulted in a reduction of adhesion with respect to each isogenic wild type strain. Furthermore, the adhesion of the wild-type strain was prevented by using anti-NHBA polyclonal sera, demonstrating the specificity of the interaction. These results suggest that NHBA could be a novel meningococcal adhesin contributing to host-cell interaction. Moreover, we analysed NHBA NalP-mediated cleavage in different NHBA peptides and showed that not all NHBA peptides are cleaved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoclonal antibodies have emerged as one of the most promising therapeutics in oncology over the last decades. The generation of fully human tumorantigen-specific antibodies suitable for anti-tumor therapy is laborious and difficult to achieve. Autoreactive B cells expressing those antibodies are detectable in cancer patients and represent a suitable source for human antibodies. However, the isolation and cultivation of this cell type is challenging. A novel method was established to identify antigen-specific B cells. The method is based on the conversion of the antigen independent CD40 signal into an antigen-specific one. For that, the artificial fusion proteins ABCos1 and ABCos2 (Antigen-specific B cell co-stimulator) were generated, which consist of an extracellular association-domain derived from the constant region of the human immunoglobulin (Ig) G1, a transmembrane fragment and an intracellular signal transducer domain derived of the cytoplasmic domain of the human CD40 receptor. By the association with endogenous Ig molecules the heterodimeric complex allows the antigen-specific stimulation of both the BCR and CD40. In this work the ability of the ABCos constructs to associate with endogenous IgG molecules was shown. Moreover, crosslinking of ABCos stimulates the activation of NF-κB in HEK293-lucNifty and induces proliferation in B cells. The stimulation of ABCos in transfected B cells results in an activation pattern different from that induced by the conventional CD40 signal. ABCos activated B cells show a mainly IgG isotype specific activation of memory B cells and are characterized by high proliferation and the differentiation into plasma cells. To validate the approach a model system was conducted: B cells were transfected with IVT-RNA encoding for anti-Plac1 B cell receptor (antigen-specific BCR), ABCos or both. The stimulation with the BCR specific Plac1 peptide induces proliferation only in the cotransfected B cell population. Moreover, we tested the method in human IgG+ memory B cells from CMV infected blood donors, in which the stimulation of ABCos transfected B cells with a CMV peptide induces antigen-specific expansion. These findings show that challenging ABCos transfected B cells with a specific antigen results in the activation and expansion of antigen-specific B cells and not only allows the identification but also cultivation of these B cells. The described method will help to identify antigen-specific B cells and can be used to characterize (tumor) autoantigen-specific B cells and allows the generation of fully human antibodies that can be used as diagnostic tool as well as in cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der Fokus dieser Arbeit lag auf der definierten Synthese multifunktioneller Polymer-Konjugate zur Anwendung in der Krebs-Immunotherapie. Durch gezielte Variation der Kon-jugationsbedingungen wurde Zusammensetzung, Größe und Aggregationsverhalten in Zell-medium sowie in humanem Serum untersucht. Nach definierter physikalisch-chemischer Charakterisierung wurde dann die induzierte Antigen-Präsentation zur Aktivierung der T-Zellproliferation analysiert.rnDafür wurden zwei verschiedene polymere Carrier-Systeme gewählt, lineares Poly-L-lysin und eine Polylysinbürste (PLL-Bürste). Es wird vermutet, dass die PLL-Bürste aufgrund der anisotropen Form eine bessere Verteilung im Körper und eine verlängerte Zirkulationsdauer zeigen wird. Die zu konjugierenden biologisch aktiven Komponenten waren der antiDEC205-Antikörper (aDEC205) für die gezielte Adressierung CD8-positiver dendritischer Zellen (DC), ein Ovalbumin (OVA)-spezifisches Antigen mit der Kernsequenz SIINFEKL für die Spezifität der Immunantwort gegen Krebszellen, die dieses Antigen tragen, und ein immunaktivieren-der TLR9-Ligand, CpG1826. Die Effizienz dieses Konjugates dendritische Zellen zu aktivieren, welche wiederum eine Immunantwort gegen OVA-exprimierende Krebszellen induzieren, wurde durch die Konjugation aller Komponenten am identischen Trägermolekül deutlich höher erwartet.rnLineares Poly-L-lysin diente als Modellsystem um die Konjugationschemie zu etablieren und dann auf die zylindrische Polylysinbürste zu übertragen. Anhand dieser polymeren Träger wurde das Verhalten der verschiedenen Topologien des Knäuels und der Bürste im Hinblick auf den Einfluss struktureller Unterschiede sowohl auf Konjugationsreaktionen als auch auf das in situ und in vitro Verhalten untersucht.rnFluoreszenzmarkiertes Antigen und der CpG Aktivator konnten jeweils aufgrund einer Thiol-Modifizierung an die Thiol-reaktive Maleimidgruppe des heterobifunktionellen Linkers Sulfo-SMCC an PLL-AlexaFluor48 konjugiert werden. Anschließend wurde aDEC205-AlexaFluor647 an PLL gekoppelt, entweder durch Schiff Base-Reaktion des oxidierten Antikörpers mit PLL und anschließender Reduzierung oder durch Click-Reaktion des PEG-Azids modifizierten An-tikörpers mit Dicyclobenzylcyclooctin (DIBO)-funktionalisiertem PLL. Die Konjugation der biologisch aktiven Komponenten wurde mit Durchflusszytometrie (FACS) und konfokaler Laser Scanning Mikroskopie (CLSM) untersucht und die Zusammensetzung des Konjugatesrnmittels UV/Vis-Spektroskopie bestimmt. Die PLL-Bürste alleine zeigte eine hohe Zytotoxizität bei HeLa und JAWS II Zelllinien, wohingegen lineares PLL und PLL-Konjugate sowie die PLL Bürsten-Konjugate keine ausgeprägte Zytotoxizität aufwiesen. Die Polymer-Konjugate wie-sen keine Aggregation in Zellmedium oder humanem Serum auf, was mittels winkelabhängi-ger dynamischer Lichtstreuung bestimmt wurde. CLSM Aufnahmen zeigten Kolokalisation der an die einzelnen Komponenten gebundenen Fluoreszenzfarbstoffe in dendritischen Zel-len, was die erfolgreiche Konjugation und Internalisierung der Konjugate in die Zellen bele-gen konnte. FACS Messungen ergaben eine geringfügig erhöhte Aufnahme des adressierten PLL-Antigen-Antikörper-Konjugates verglichen mit dem PLL-Antigen-Konjugat. Experimente mit dem „Specific Hybridization Internalization Sensor“ (SHIP) zeigten jedoch nur Aufnahme der PLL-Konjugate in CD8+ unreife DC, nicht in reife DC, die nicht mehr unspezifisch, sondern nur noch über Rezeptoren internalisieren. Dies bewies die unspezifische Aufnahme des Kon-jugates, da Antikörper-Konjugation keine Rezeptor-vermittelte Endozytose in reife DC indu-zieren konnte. T-Zell-Proliferationsassays ergaben eine Aktivierung von CD8+ T-Zellen indu-ziert durch Antigen-tragende Konjugate, wohingegen Konjugate ohne Antigen als Negativ-kontrollen dienten und keine T-Zell-Proliferation erzielten. Es konnte jedoch kein Unter-schied zwischen adressierten und nicht adressierten Konjugaten aufgrund der unspezifischen Aufnahme durch das Polymer beobachtet werden. Lösliches SIINFEKL alleine bewirkte schon bei geringeren Konzentrationen eine T-Zell-Proliferation.rnEs war somit möglich, drei biologischen Komponenten an einen polymeren Träger zu konju-gieren und diese Konjugate im Hinblick auf Zusammensetzung, Größe, Internalisierung in dendritische Zellen und Aktivierung der T-Zell-Proliferation zu untersuchen. Außerdem wur-de die Konjugationschemie erfolgreich von dem Modellsystem des linearen PLL auf die PLL-Bürste übertragen. Die Polymer-Konjugate werde unspezifisch in DC aufgenommen und in-duzieren T-Zellproliferation, die mit Antigen-Präsentationsassays nachgewiesen wird. Es konnte jedoch durch Konjugation des Antikörpers keine Rezeptor-vermittelte Aufnahme in CD8+ DC erzielt werden.rnDiese Studien stellen einen erfolgsversprechenden ersten Schritt zur Entwicklung neuer Na-nomaterialien für die Anwendung in Krebs-Immuntherapie dar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotherapy with T cells genetically modified by retroviral transfer of tumor-associated antigen (TAA)-specific T cell receptors (TCR) is a promising approach in targeting cancer. Therefore, using a universal TAA to target different tumor entities by only one therapeutic approach was the main criteria for our TAA-specific TCR. Here, an optimized (opt) αβ-chain p53(264-272)-specific and an opt single chain (sc) p53(264-272)-specific TCR were designed, to reduce mispairing reactions of endogenous and introduced TCR α and TCR β-chains, which might lead to off-target autoimmune reactions, similar to Graft-versus-host disease (GvHD). rnIn this study we evaluated the safety issues, which rise by the risk of p53TCR gene transfer-associated on/off-target toxicities as well as the anti-tumor response in vivo in a syngeneic HLA-A*0201 transgenic mouse model. We could successfully demonstrate that opt sc p53-specific TCR-redirected T cells prevent TCR mispairing-mediated lethal off-target autoimmunity in contrast to the parental opt αβ-chain p53-specific TCR. Since the sc p53-specific TCR proofed to be safe, all further studies were performed using sc p53-specific TCR redirected T cells only. Infusion of p53-specific TCR-redirected T cells in Human p53 knock-in (Hupki) mice after lymphodepletion-preconditioning regimen with either sublethal body irradiation (5Gy) or chemotherapy (fludarabine and cyclophosphamide) in combination with vaccination (anti-CD40, CpG1668 and p53(257-282) peptide) did not result in a depletion of hematopoietic cells. Moreover, adoptive transfer of high numbers of p53-specific TCR-redirected T cells in combination with Interleukin 2 (IL-2) also did not lead to toxic on-target reactions. The absence of host tissue damage was confirmed by histology and flow cytometry analysis. Furthermore, p53-specific TCR-redirected T cells were able to lyse p53+A2.1+ tumor cells in vitro. However, in vivo studies revealed the potent suppressive effect of the tumor microenvironment (TME) mediated by tumor-infiltrating myeloid-derived suppressor cells (MDSC). Accordingly, we could improve an insufficient anti-tumor response in vivo after injection of the sc p53-specific TCR-redirected T cells by additional depletion of immunosuppressive cells of the myeloid lineage.rnTogether, these data suggest that the optimized sc p53(264-272)-specific TCR may represent a safe and efficient approach for TCR-based gene therapy. However, combinations of immunotherapeutic strategies are needed to enhance the efficacy of adoptive cell therapy (ACT)-mediated anti-tumor responses.