969 resultados para Annual reproductive cycle
Resumo:
Title V of the Social Security Act is the longest-standing public health legislation in American history. Enacted in 1935, Title V is a federal-state partnership that promotes and improves maternal and child health (MCH). According to each state’s unique needs, Title V supports a spectrum of services, from infrastructure building services like quality assurance and policy development, to gap-filling direct health care services. Title V resources are directed towards MCH priority populations: pregnant women, mothers, infants, women of reproductive years, children and adolescents and children and youth with special health care needs.
Resumo:
Background, aim, and scope A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent way.
Resumo:
Studies are performed in developing techniques/procedures that provide greater reproductive performance in farm animals, including pigs. In this sense, the study of gilts reproductive organs at different oestrus cycle stages for assessing the presence of abnormalities and/or other parameters that may affect the future animal fertility is important. In order to evaluate the morphological, morphometric and histomorphometric features of ovaries, uterus and uterine tubes (UTs) characteristics of prepubertal gilts at different oestrus cycle stages, reproductive tracts from 48 animals immediately after slaughter were obtained. After, the structures were dissected and removed, and the ovaries were used for classification of oestrus cycle stage of each gilt in follicular phase (FP) and luteal phase (FL). Then, morphometric evaluations of ovaries, UTs, uterine horns and uterine body were performed. Besides that, medial segments of UTs and uterus were fixed in Bouin solution, processed and included in paraffin, when histological sections of 5.0 micrometers (µm) were obtained and stained with Hematoxylin and Eosin. Histomorphometric analyzes using image capture system and specific software were performed. Afterwards, data were submitted to Student's t test for assessment the statistical differences (P<0.05) between the two different oestrus cycle stages (FP × LP) and between the placement of reproductive structures (right × left antimer). Among the gilts evaluated, 35 were in the FP and 13 in LP. There was no difference (P>0.05) between morphometric parameters of ovaries, UTs and uterus of gilts in FP and LP. Likewise, in respect to the placement of reproductive structures, both in the oestrus cycle stages, as in the general average, there was no difference (P>0.05). Regarding the histomorphometric variables, gilts classified in FP presented a higher (P<0.05) height of glandular and UT epithelium compared to animals in LP. On the other hand, the diameter of endometrial glands was higher (P<0.05) in gilts at LP compared to FP. Furthermore, gilts in LP presented a higher (P<0.05) proportion of endometrium occupied by glands, whereas animals in FP had a higher (P<0.05) proportion of connective tissue and blood vessels. In conclusion, in prepubertal gilts, the histomorphometric parameters as endometrial glands diameter, the height of glandular epithelium and of UT epithelium and the proportion of endometrium occupied by connective tissue, besides the glands and blood vessels varies through the oestrus cycle, possibly under the influence of ovarian steroids.
Resumo:
The Galea spixii inhabits semiarid vegetation of Caatinga in the Brazilian Northeast. They are bred in captivity for the development of researches on the biology of reproduction. Therefore, the aim of this study is characterize the estrous cycle of G. spixii, in order to provide information to a better knowledge of captive breeding of the species. The estrous cycle was monitored by vaginal exfoliative cytology in 12 adult females. After the detection of two complete cycles in each animal, the same were euthanized. Then, histological study of the vaginal epithelium, with three females in each phase of the estrous cycle was performed; five were paired with males for performing the control group for estrous cycle phases, and three other were used to monitor the formation and rupture of vaginal closure membrane. By vaginal exfoliative cytology, predominance of superficial cells in estrus, large intermediate cells in proestrus, intermediate and parabasal cells, with neutrophils, in diestrus and metestrus respectively was found. Estrus was detected by the presence of spermatozoa in the control group. By histology, greater proliferation of the vaginal epithelium in proestrus was observed. We conclude that the estrous cycle of G. spixii lasts 15.8 ± 1.4 days and that the vaginal closure membrane develops until complete occlusion of the vaginal ostium, breaking after few days. Future studies may reveal the importance of this fact for the reproductive success of this animal.
Resumo:
Recent studies indicate that glyphosate applied in post-emergence in RR soybean can eventually cause phytotoxic effects. However, there are many questions that need to be clarified in the scientific and technical contexts, involving the issue of RR soybeans regarding the use of glyphosate. This study has assessed the impact of the application of different doses and formulations of glyphosate in the reproductive period of RR soybean (R1 stage). For that purpose, an experiment in the field was conducted in two harvests (2011/12 and 2012/13), in which a 2 x 5 factorial design was used (formulations versus doses) totaling 10 treatments. In these two experiments the variables related to agronomic performance were: phytotoxicity (7, 14, 21 and 28 days after application), plant height, number of pods per plant, yield and weight of 100 grains (end of soy cycle). The results obtained allowed characterizing phytotoxicity and damages to the height and yield in RR soybean, with increasing rates of glyphosate applied in the reproductive period.
Resumo:
Studies on the regeneration and seedling mortality of rare tree species are important, but scarce. The aim of this study was to investigate the annual variation in recruitment, growth and mortality of juveniles of Enterolobium glaziovii Benth., a rare tree species from the Brazilian Atlantic Rain Forest. All seedlings and juveniles around four reproductive trees were labeled and their fate was followed from 1996 to 1999. There were no annual differences in juveniles' recruitment below and beyond the parental crown, but juveniles' survival and growth were lower below than beyond of the parental tree crowns. Small individuals (< 15 cm tall) showed the greatest mortality and the lowest growth, followed by medium (from 15 to 50 cm tall) and large ones (> 50 cm tall). Large juveniles were more widely dispersed from the conspecific parental tree than were medium and small ones. This suggests that distance dependent mortality of juveniles mediated by the parental tree is an important cause of spacing shifts associated with the growth of small individuals of E. glaziovii into large ones. Widely dispersed juveniles may escape the high mortality associated with pathogens, herbivores or seed predators concentrated around adult conspecifics. The negative influence of the parental tree on its juveniles may explain the sparse distribution of its adults in the forest.
Resumo:
This paper discusses the phenological strategies of Melocactus glaucescens Buining & Brederoo, M. paucispinus G. Heimen & R. Paul, M. ernestii Vaupel and M. ×albicephalus Buining & Brederoo, species from Chapada Diamantina, northeastern Brazil. Melocactus glaucescens, M. ernestii and M. ×albicephalus occur sympatrically in an area of "caatinga"/"cerrado" vegetation, and M. paucispinus in an area of "cerrado"/"campo rupestre". The superposition of flowering in these sympatric taxa was compared and analyzed. The phenology of M. paucispinus was correlated with both abiotic and biotic factors. Flowering of M. glaucescens and M. ×albicephalus were observed to be continuous (though with moderate peaks of activity), while fruiting was sub-annual. Melocactus ernestii exhibited an annual pattern of both flowering and fruiting; while in M. paucispinus the same patterns were sub-annual. These sympatric taxa showed 40% overlap of flowering periods, reaching to more than 50% in paired combinations of taxa, considering both the number of specimens flowering, as well as the quantity of resources being offered. Available information indicates that these taxa share pollinators, but phenological data rejects the hypothesis of shared pollinators and supports the hypothesis of hybridization in the study area. Rainfall was negatively correlated with flowering in M. paucispinus, but positively correlated with fruiting. Flowering of M. paucispinus in dry periods of the year avoids that erect flowers positioned in terminal cephalium, exposed in open areas of the vegetation, be damaged for the rains, while fruiting in rainy periods can be favorable to the dispersion and germination of this species.
Resumo:
Above-ground litter production is one of the most accessible ways to estimate ecosystem productivity, nutrient fluxes and carbon transfers. Phenological patterns and climatic conditions are still not fully explained well for tropical and subtropical forests under less pronounced dry season and non-seasonal climates, as well as the interaction of these patterns with successional dynamics. Monthly litterfall was estimated for two years in a 9 to 10 year old secondary alluvial Atlantic Rain forest. Total litterfall was higher in the site with more developed vegetation (6.4 ± 1.2 ton ha-1 year-1; 95% confidence interval) as compared to the site with less developed vegetation (3.0 ± 1.0 ton ha-1 year-1). The monthly production of 11 litter fractions (eight fractions comprising the leaf litter of the seven main species of the community and other species; reproductive parts, twigs £ 2 cm diameter, and miscellaneous material) were correlated with meteorological variables making possible to identify three patterns of deposition. The main pattern, dominated by leaf-exchanging species, consisted of a cycle with the highest litterfall at the beginning of the rainy season, preceding by basically three months the peaks of the annual cycles of rainfall and temperatures. Other two patterns, dominated by brevi-deciduous species, peaked at the end of the rainy season and at the end of the non-rainy season. Tropical and subtropical dry forests that present the highest leaf fall gradually earlier than rain forests (as the studied sites) are possibly related to the start of senescence process. It seems that such process is triggered earlier by a more severe hydric stress, besides other factors linked to a minor physiological activity of plants that result in abscission.
Resumo:
We investigated the reproductive biology of Protium spruceanum (Benth.) Engler in vegetation corridors of secondary Atlantic forest in Lavras, southern Minas Gerais State, Brazil. The reproductive phenology was investigated fortnightly over a one year period. Floral biology studies involved pollen viability analysis, nectar production, stigmatic receptivity, pollen tube growth, visiting insect species and visit rates. The small, pale yellowish flowers (0.3-0.4 cm diameter) are functionally unisexual and organized in dense inflorescences (ca. 45 flowers). P. spruceanum presented annual flowering between September and November. Staminate flowers supplied a high percentage of viable pollen (90.6%) and relatively abundant nectar (x = 4.5 μL). Pistillate flowers produced only nectar to flower visitors (x = 4.0 μL). The effective pollinators were Apis mellifera and Trigona sp. (Hymenoptera, Apidae). Pollen tubes of cross-pollinated flowers were observed entering the ovaries 48 h after pollination. The fruiting season is from October to March, with a peak in November, coinciding with the rainfall peak. Ecological implications of these findings, and alternative arguments to explain the high genetic diversity at regional landscape are discussed.
Resumo:
Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1) interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP) have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5%) followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.
Resumo:
Le syndrome reproducteur et respiratoire porcin (SRRP) est la maladie infectieuse la plus économiquement importante de l’industrie porcine. Une étude récente a démontré que le surnageant de culture d’Actinobacillus pleuropneumoniae (App) inhibe l’infection du virus SRRP (VSRRP) in vitro dans des cellules de singe. L’objectif de cette étude est de démontrer l’effet antiviral d’App contre le VSRRP dans les cellules cibles du virus in vivo: les macrophages alvéolaires porcins (MAPs) et d’étudier les mécanismes spécifiques impliqués lors de l’inhibition virale. Les MAPs ont été traités avec App, avant et après l’infection avec le VSRRP. À différents temps post-infection, la réplication et la transcription du génome viral ont été quantifiées. L’expression des interférons (IFN) type I et II, ainsi que le profil protéomique en présence ou absence d’App ont été évalués. L’expression de certaines protéines a été confirmée par immunobuvardage et immunofluorescence (IF). Les résultats ont démontré que l’effet antiviral d’App n’est pas via l’induction des IFN type I et II. App inhibe l’infection virale dans MAPs avant la réplication et la transcription du génome viral, ce qui indique qu’App inhibe précocement le cycle réplicatif viral. Le profil protéomique a révélé qu’App augmentait l’expression de la cofiline, une protéine qui provoque la dépolymérisation de l’actine. De plus, ce phénomène de dépolymérisation a été confirmé par IF. Le traitement des MAPs avec la cytochalasin D (un composé qui provoque la fragmentation des microfilments) a démontré que comme pour App, cette drogue inhibe la réplication virale. Les résultats obtenus suggèrent que l’effet antiviral d’App est via l'activation de la cofiline et dépolymérisation de l’actine, affectant probablement l’endocytose du VSRRP.
Resumo:
Small, at-risk populations are those for which accurate demographic information is most crucial to conservation and recovery, but also where data collection is constrained by logistical challenges and small sample sizes. Migratory animals in particular may experience a wide range of threats to survival and reproduction throughout each annual cycle, and identification of life stages most critical to persistence may be especially difficult for these populations. The endangered eastern Canadian breeding population of Piping Plover (Charadrius melodus melodus) was estimated at only 444 adults in 2005, and extensive effort has been invested in conservation activities, reproductive monitoring, and marking of individual birds, providing a comprehensive data set on population dynamics since 1998. We used these data to build a matrix projection model for two Piping Plover population segments that nest in eastern Canada in order to estimate both deterministic and stochastic rates of population growth (λd and λs, respectively). Annual population censuses suggested moderate growth in abundance between 1998–2003, but vital rate estimates indicated that this temporary growth may be replaced by declines in the long term, both in southern Nova Scotia (λd = 1.0043, λs = 0.9263) and in the Gulf of St. Lawrence (λd = 0.9651, λs = 0.8214). Nonetheless, confidence intervals on λ estimates were relatively wide, highlighting remaining uncertainty in future population trajectories. Differences in projected growth between regions appear to be driven by low estimated juvenile post-fledging survival in the Gulf, but threats to juveniles of both population segments following departure from nesting beaches remain unidentified. Similarly, λ in both population segments was particularly sensitive to changes in adult survival as expected for most migratory birds, but very little is understood about the threats to Piping Plover survival during migration and overwintering. Consequently, we suggest that future recovery efforts for these and other vulnerable migrants should quantify and manage the largely unknown sources of both adult and juvenile mortality during non-breeding seasons while maintaining current levels of nesting habitat protection.
Resumo:
The effort expended on reproduction may entail future costs, such as reduced survival or fecundity, and these costs can have an important influence on life-history optimization. For birds with precocial offspring, hypothesized costs of reproduction have typically emphasized nutritional and energetic investments in egg formation and incubation. We measured seasonal survival of 3856 radio-marked female Mallards (Anas platyrhynchos) from arrival on the breeding grounds through brood-rearing or cessation of breeding. There was a 2.5-fold direct increase in mortality risk associated with incubating nests in terrestrial habitats, whereas during brood-rearing when breeding females occupy aquatic habitats, mortality risk reached seasonal lows. Mortality risk also varied with calendar date and was highest during periods when large numbers of Mallards were nesting, suggesting that prey-switching behaviors by common predators may exacerbate risks to adults in all breeding stages. Although prior investments in egg laying and incubation affected mortality risk, most relationships were not consistent with the cost of reproduction hypothesis; birds with extensive prior investments in egg production or incubation typically survived better, suggesting that variation in individual quality drove both relationships. We conclude that for breeding female Mallards, the primary cost of reproduction is a fixed cost associated with placing oneself at risk to predators while incubating nests in terrestrial habitats.
Resumo:
The modelled El Nino-mean state-seasonal cycle interactions in 23 coupled ocean-atmosphere GCMs, including the recent IPCC AR4 models, are assessed and compared to observations and theory. The models show a clear improvement over previous generations in simulating the tropical Pacific climatology. Systematic biases still include too strong mean and seasonal cycle of trade winds. El Nino amplitude is shown to be an inverse function of the mean trade winds in agreement with the observed shift of 1976 and with theoretical studies. El Nino amplitude is further shown to be an inverse function of the relative strength of the seasonal cycle. When most of the energy is within the seasonal cycle, little is left for inter-annual signals and vice versa. An interannual coupling strength (ICS) is defined and its relation with the modelled El Nino frequency is compared to that predicted by theoretical models. An assessment of the modelled El Nino in term of SST mode (S-mode) or thermocline mode (T-mode) shows that most models are locked into a S-mode and that only a few models exhibit a hybrid mode, like in observations. It is concluded that several basic El Nino-mean state-seasonal cycle relationships proposed by either theory or analysis of observations seem to be reproduced by CGCMs. This is especially true for the amplitude of El Nino and is less clear for its frequency. Most of these relationships, first established for the pre-industrial control simulations, hold for the double and quadruple CO2 stabilized scenarios. The models that exhibit the largest El Nino amplitude change in these greenhouse gas (GHG) increase scenarios are those that exhibit a mode change towards a T-mode (either from S-mode to hybrid or hybrid to T-mode). This follows the observed 1976 climate shift in the tropical Pacific, and supports the-still debated-finding of studies that associated this shift to increased GHGs. In many respects, these models are also among those that best simulate the tropical Pacific climatology (ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1, MRI-CGM2.3.2, UKMO-HadCM3). Results from this large subset of models suggest the likelihood of increased El Nino amplitude in a warmer climate, though there is considerable spread of El Nino behaviour among the models and the changes in the subsurface thermocline properties that may be important for El Nino change could not be assessed. There are no clear indications of an El Nino frequency change with increased GHG.
Resumo:
The annual and interannual variability of idealized, linear, equatorial waves in the lower stratosphere is investigated using the temperature and velocity fields from the ECMWF 15-year re-analysis dataset. Peak Kelvin wave activity occurs during solstice seasons at 100 hPa, during December-February at 70 hPa and in the easterly to westerly quasi-biennial oscillation (QBO) phase transition at 50 hPa. Peak Rossby-gravity wave activity occurs during equinox seasons at 100 hPa, during June-August/September-November at 70 hPa and in the westerly to easterly QBO phase transition at 50 hPa. Although neglect of wind shear means that the results for inertio-gravity waves are likely to be less accurate, they are still qualitatively reasonable and an annual cycle is observed in these waves at 100 hPa and 70 hPa. Inertio-gravity waves with n = 1 are correlated with the QBO at 50 hPa, but the eastward inertio-gravity n = 0 wave is not, due to its very fast vertical group velocity in all background winds. The relative importance of different wave types in driving the QBO at 50 hPa is also discussed. The strongest acceleration appears to be provided by the Kelvin wave while the acceleration provided by the Rossby-gravity wave is negligible. Of the higher-frequency waves, the westward inertio-gravity n = 1 wave appears able to contribute more to the acceleration of the 50 hPa mean zonal wind than the eastward inertio-gravity n = 1 wave.