788 resultados para Amperometric sensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imagens NDVI (Índice de Vegetação por Diferença Normalizada) do sensor Modis foram utilizadas para mapear as classes de uso e cobertura da terra nas Serras do Sudeste e Campanha Meridional do Rio Grande do Sul. A metodologia compreendeu a elaboração de um banco de dados espaciais e a aplicação de técnicas de processamento digital (contraste linear, classificação digital e operações aritméticas) sobre imagens dos satélites Landsat e Terra de diversas datas. Os resultados indicaram que a cobertura florestal passou de 8,6% para 11,6% e 14,3% da área total da microrregião Serras do Sudeste, entre os anos 2000, 2004 e 2008. Na Campanha Meridional, a expansão da cobertura florestal passou de 11,1% para 11,2% e 11,5% da área total no mesmo período. Conclui-se que imagens MOD13Q1, de baixa resolução espacial (250 m), podem ser usadas em grandes áreas para mapear florestas e os demais temas adequadamente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteriorhodopsin (BR) is a photosensitive protein which functions as a light-driven proton pump. Due to its photoactivity, BR could be used in photosensing and information processing which has inspired researchers to study the photoelectric response and the appropriate measurement instrumentation for BR. In this thesis, the measurement instrumentation connected to a dry BR sensor was confirmed to affect the photovoltage response measured by using voltage amplifiers. Changing of the input impedance of the measurement instrumentation was shown to alter a part of the measured photovoltage response. The photocurrent measurements using transimpedance amplifier and the presented electrical equivalent circuit were used to show that the photocurrent measurements have no significant effect on the photoelectric response. The photocurrent was shown to be a derivate of the photovoltage response measured from the dry BR sensor when it was compared to the response measured with a voltage amplifier. This confirmed that another part of the photovoltage response was not affected by the measurement instrumentation. The time-variant behavior of the dry BR sensor was confirmed in both the photocurrent and the photovoltage measurements. This was caused by the fact that the capacitance of the dry BR sensor changes with the excitation light intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Áreas com diferentes potenciais de rendimento dentro de uma lavoura necessitam ser manejadas separadamente, para fins de aplicação da adubação nitrogenada em cobertura. O equipamento baseado em sensoriamento remoto terrestre (GreenSeeker) é um dos instrumentos utilizados para separar diferentes zonas de manejo. Para fazer isso, o sensor permite a definição de classes para estimar o potencial produtivo de forma ágil, precisa e em tempo real. Com o instrumento, foi desenvolvido um modelo para estimativa do potencial produtivo em trigo e cevada, correlacionando o Índice de Vegetação por Diferença Normalizada (NDVI) com a biomassa seca acumulada na parte aérea, por ocasião da emissão da sexta folha do colmo principal. A base do modelo foi a formação de classes de potencial produtivo correspondentes a zonas específicas de manejo da lavoura. Essas classes não necessitam ser específicas para diferentes cultivares e/ou espécies, visto que não se detectaram diferenças que justificassem a formação de grupos para elas. As superfícies de fundo (resíduos de restevas de soja e milho) tiveram efeitos significativos nas leituras do sensor. O modelo continua válido mesmo se as leituras de NDVI forem feitas antes ou após o período recomendado para tal, podendo ser ajustado com sub ou superestimação. As análises de variabilidade espacial, futuramente, podem avaliar se, as zonas de potencial produtivo estimadas pelas classes de NDVI propostas pelo modelo, correspondem à flutuação espacial da biomassa, doses de N aplicadas e rendimento de grãos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar sensores capacitivos desenvolvidos para monitorar o teor de água do solo. Os sensores foram submetidos a testes para avaliar o efeito da temperatura, o tempo de resposta, obter a equação de calibração e determinar a sua sensibilidade. Foram analisados em diferentes situações (solo, água e ar) e temperaturas (25 ºC; 20 ºC; 15 ºC; 10 ºC; 5º C e 0 ºC). A calibração foi efetuada com um dos sensores capacitivos instalado em uma coluna de solo (indeformada) contida em um tubo de PVC (0,015066 m³) e suspensa em um dos lados de uma balança de braços. Na outra extremidade da balança, havia uma célula de carga conectada a um sistema de aquisição de dados. Os resultados indicaram redução na frequência do sensor capacitivo com o aumento da temperatura. O sensor capacitivo apresentou alta velocidade de resposta (menos de um segundo) ao imergi-lo na água e às variações da quantidade de água na amostra de solo e detectou as mudanças de perda de água pela coluna de solo no decorrer deste experimento, apresentando maior sensibilidade à medida que se diminui o conteúdo de água no solo. Portanto, o sensor capacitivo pode ser utilizado para determinar o teor de água do solo de forma adequada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The irrigation management based on the monitoring of the soil water content allows for the minimization of the amount of water applied, making its use more efficient. Taking into account these aspects, in this work, a sensor for measuring the soil water content was developed to allow real time automation of irrigation systems. This way, problems affecting crop yielding such as irregularities in the time to turn on or turn off the pump, and excess or deficit of water can be solved. To develop the sensors were used stainless steel rods, resin, and insulating varnish. The sensors measuring circuit was based on a microcontroller, which gives its output signal in the digital format. The sensors were calibrated using soil of the type “Quartzarenic Neosoil”. A third order polynomial model was fitted to the experimental data between the values of water content corresponding to the field capacity and the wilting point to correlate the soil water content obtained by the oven standard method with those measured by the electronic circuit, with a coefficient of determination of 93.17%, and an accuracy in the measures of ±0.010 kg kg-1. Based on the results, it was concluded that the sensor and its implemented measuring circuit can be used in the automation process of irrigation systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to perform an experimental study to evaluate the proper operation distance between the nodes of a wireless sensor network available on the market for different agricultural crops (maize, physic nut, eucalyptus). The experimental data of the network performance offers to farmers and researchers information that might be useful to the sizing and project of the wireless sensor networks in similar situations to those studied. The evaluation showed that the separation of the nodes depends on the type of culture and it is a critical factor to ensure the feasibility of using WSN. In the configuration used, sending packets every 2 seconds, the battery life was about four days. Therefore, the autonomy may be increased with a longer interval of time between sending packets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The net radiation (Rn) represents the main source of energy for physical and chemical processes that occur in the surface-atmosphere interface, and it is used for air and soil heating, water transfer, in the form of vapor from the surface to the atmosphere, and for the metabolism of plants, especially photosynthesis. If there is no record of net radiation in certain areas, the use of information is important to help determine it. Among them we can highlight those provided by remote sensing. In this context, this work aims to estimate the net radiation, with the use of products of MODIS sensor, in the sub-basins of Entre Ribeiros creek and Preto River, located between the Brazilian states of Goiás and Minas Gerais. The SEBAL (Surface Energy Balance Algorithm for Land) was used to obtain the Rn in four different days in the period of July to October, 2007. The Rn results obtained were consistent with others cited in the literature and are important because the orbital information can help determine the Rn in areas where there are not automatic weather stations to record the net radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO O Estado do Paraná caracteriza-se por uma grande variabilidade de épocas de semeadura (DS) e, consequentemente, pelo desenvolvimento máximo vegetativo (DMDV), colheita (DC) e ciclo (CI) para a cultura da soja. O objetivo deste trabalho foi estimar essas datas para o período de primavera-verão do ano-safra de 2011/2012, por meio de séries temporais de imagens do Índice de Vegetação Realçado (do inglês Enhanced Vegetation Index - EVI) do sensor Modis (Moderate Resolution Imaging Spectroradiometer). Gerou-se um perfil espectrotemporal médio de EVI, considerando todos os pixels mapeados como soja dentro de cada município. Estes dados serviram de entrada no software Timesat para estimar os decêndios do ciclo da cultura (DS, DMDV, DC e CI) por municípios. Os resultados mostraram que existe grande variabilidade de datas de plantio em diferentes mesorregiões do Estado. Verificaram-se também divergências entre os resultados encontrados e os dados oficiais de DS e DC. A maior parte da semeadura (65,16%) esteve entre o terceiro decêndio de outubro e o primeiro decêndio de novembro. A maior parte da área de soja do Estado do Paraná (65,46%) teve seu DMDV em janeiro e colheita em março (53,92%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master’s thesis is devoted to study different heat flux measurement techniques such as differential temperature sensors, semi-infinite surface temperature methods, calorimetric sensors and gradient heat flux sensors. The possibility to use Gradient Heat Flux Sensors (GHFS) to measure heat flux in the combustion chamber of compression ignited reciprocating internal combustion engines was considered in more detail. A. Mityakov conducted an experiment, where Gradient Heat Flux Sensor was placed in four stroke diesel engine Indenor XL4D to measure heat flux in the combustion chamber. The results which were obtained from the experiment were compared with model’s numerical output. This model (a one – dimensional single zone model) was implemented with help of MathCAD and the result of this implementation is graph of heat flux in combustion chamber in relation to the crank angle. The values of heat flux throughout the cycle obtained with aid of heat flux sensor and theoretically were sufficiently similar, but not identical. Such deviation is rather common for this type of experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric materials that conduct electricity are highly interesting for fundamental studies and beneficial for modern applications in e.g. solar cells, organic field effect transistors (OFETs) as well as in chemical and bio‐sensing. Therefore, it is important to characterize this class of materials with a wide variety of methods. This work summarizes the use of electrochemistry also in combination with spectroscopic methods in synthesis and characterization of electrically conducting polymers and other π‐conjugated systems. The materials studied in this work are intended for organic electronic devices and chemical sensors. Additionally, an important part of the presented work, concerns rational approaches to the development of water‐based inks containing conducting particles. Electrochemical synthesis and electroactivity of conducting polymers can be greatly enhanced in room temperature ionic liquids (RTILs) in comparison to conventional electrolytes. Therefore, poly(para‐phyenylene) (PPP) was electrochemically synthesized in the two representative RTILs: bmimPF6 and bmiTf2N (imidazolium and pyrrolidinium‐based salts, respectively). It was found that the electrochemical synthesis of PPP was significantly enhanced in bmimPF6. Additionally, the results from doping studies of PPP films indicate improved electroactivity in bmimPF6 during oxidation (p‐doping) and in bmiTf2N in the case of reduction (n‐doping). These findings were supported by in situ infrared spectroscopy studies. Conducting poly(benzimidazobenzophenanthroline) (BBL) is a material which can provide relatively high field‐effect mobility of charge carriers in OFET devices. The main disadvantage of this n‐type semiconductor is its limited processability. Therefore in this work BBL was functionalized with poly(ethylene oxide) PEO, varying the length of side chains enabling water dispersions of the studied polymer. It was found that functionalization did not distract the electrochemical activity of the BBL backbone while the processability was improved significantly in comparison to conventional BBL. Another objective was to study highly processable poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) water‐based inks for controlled patterning scaled‐down to nearly a nanodomain with the intention to fabricate various chemical sensors. Developed PEDOT:PSS inks greatly improved printing of nanoarrays and with further modification with quaternary ammonium cations enabled fabrication of PEDOT:PSS‐based chemical sensors for lead (II) ions with enhanced adhesion and stability in aqueous environments. This opens new possibilities for development of PEDOT:PSS films that can be used in bio‐related applications. Polycyclic aromatic hydrocarbons (PAHs) are a broad group of π‐conjugated materials consisting of aromatic rings in the range from naphthalene to even hundred rings in one molecule. The research on this type of materials is intriguing, due to their interesting optical properties and resemblance of graphene. The objective was to use electrochemical synthesis to yield relatively large PAHs and fabricate electroactive films that could be used as template material in chemical sensors. Spectroscopic, electrochemical and electrical investigations evidence formation of highly stable films with fast redox response, consisting of molecules with 40 to 60 carbon atoms. Additionally, this approach in synthesis, starting from relatively small PAH molecules was successfully used in chemical sensor for lead (II).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in Information and Communication Technology (ICT), especially those related to the Internet of Things (IoT), are facilitating smart regions. Among many services that a smart region can offer, remote health monitoring is a typical application of IoT paradigm. It offers the ability to continuously monitor and collect health-related data from a person, and transmit the data to a remote entity (for example, a healthcare service provider) for further processing and knowledge extraction. An IoT-based remote health monitoring system can be beneficial in rural areas belonging to the smart region where people have limited access to regular healthcare services. The same system can be beneficial in urban areas where hospitals can be overcrowded and where it may take substantial time to avail healthcare. However, this system may generate a large amount of data. In order to realize an efficient IoT-based remote health monitoring system, it is imperative to study the network communication needs of such a system; in particular the bandwidth requirements and the volume of generated data. The thesis studies a commercial product for remote health monitoring in Skellefteå, Sweden. Based on the results obtained via the commercial product, the thesis identified the key network-related requirements of a typical remote health monitoring system in terms of real-time event update, bandwidth requirements and data generation. Furthermore, the thesis has proposed an architecture called IReHMo - an IoT-based remote health monitoring architecture. This architecture allows users to incorporate several types of IoT devices to extend the sensing capabilities of the system. Using IReHMo, several IoT communication protocols such as HTTP, MQTT and CoAP has been evaluated and compared against each other. Results showed that CoAP is the most efficient protocol to transmit small size healthcare data to the remote servers. The combination of IReHMo and CoAP significantly reduced the required bandwidth as well as the volume of generated data (up to 56 percent) compared to the commercial product. Finally, the thesis conducted a scalability analysis, to determine the feasibility of deploying the combination of IReHMo and CoAP in large numbers in regions in north Sweden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.