980 resultados para Amorphous materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical reactions of dopamine, catechol and methylcatechol were investigated at tetrahedral amorphous carbon (ta-C) thin film electrodes. In order to better understand the reaction mechanisms of these molecules, cyclic voltammetry with varying scan rates was carried out at different pH values in H2SO4 and PBS solutions. The results were compared to the same redox reactions taking place at glassy carbon (GC) electrodes. All three catechols exhibited quasi-reversible behavior with sluggish electron transfer kinetics at the ta-C electrode. At neutral and alkaline pH, rapid coupled homogeneous reactions followed the oxidation of the catechols to the corresponding o-quinones and led to significant deterioration of the electrode response. At acidic pH, the extent of deterioration was considerably lower. All the redox reactions showed significantly faster electron transfer kinetics at the GC electrode and it was less susceptible toward surface passivation. An EC mechanism was observed for the oxidation of dopamine at both ta-C and GC electrodes and the formation of polydopamine was suspected to cause the passivation of the electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different amorphous structures have been induced in monocrystalline silicon by high pressure in indentation and polishing. Through the use of high-resolution transmission electron microscopy and nanodiffraction, it was found that the structures of amorphous silicon formed at slow and fast loading/unloading rates are dissimilar and inherit the nearest-neighbor distance of the crystal in which they are formed. The results are in good agreement with recent theoretical predictions. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of argon and nitrogen at their respective boiling points in cylindrical pores of MCM-41 type silica-like adsorbents is studied by means of a non-local density functional theory (NLDFT), which is modified to deal with amorphous solids. By matching the theoretical results of the pore filling pressure versus pore diameter against the experimental data, we arrive at a conclusion that the adsorption branch (rather than desorption) corresponds to the true thermodynamic equilibrium. If this is accepted, we derive the optimal values for the solid–fluid molecular parameters for the system amorphous silica–Ar and amorphous silica–N2, and at the same time we could derive reliably the specific surface area of non-porous and mesoporous silica-like adsorbents, without a recourse to the BET method. This method is then logically extended to describe the local adsorption isotherms of argon and nitrogen in silica-like pores, which are then used as the bases (kernel) to determine the pore size distribution. We test this with a number of adsorption isotherms on the MCM-41 samples, and the results are quite realistic and in excellent agreement with the XRD results, justifying the approach adopted in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg65Cu25Er10 and Mg65Cu15Ag10Er10 bulk amorphous alloys were produced by a copper mould casting method. The alloys have high glass-forming ability and good thermal stability. The maximum diameter of glass formation (D-c), glass transition temperature (T-g), crystallization onset temperature (T-x), temperature interval of the supercooled region (Delta T-x), melting temperature (T-m), liquidus temperature (T-1) as well as heats of crystallization (Delta H-x) and melting (Delta H-m) are reported for these alloys. Both alloys exhibit high hardness and high strength at room temperature. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen adsorption on a surface of a non-porous reference material is widely used in the characterization. Traditionally, the enhancement of solid-fluid potential in a porous solid is accounted for by incorporating the surface curvature into the solid-fluid Potential of the flat reference surface. However, this calculation procedure has not been justified experimentally. In this paper, we derive the solid-fluid potential of mesoporous MCM-41 solid by using solely the adsorption isotherm of that solid. This solid-fluid potential is then compared with that of the non-porous reference surface. In derivation of the solid-fluid potential for both reference surface and mesoporous MCM-41 silica (diameter ranging front 3 to 6.5 nm) we employ the nonlocal density functional theory developed for amorphous solids. It is found that, to out, surprise, the solid-fluid potential of a porous solid is practically the same as that for the reference surface, indicating that there is no enhancement due to Surface curvature. This requires further investigations to explain this unusual departure from our conventional wisdom of curvature-induced enhancement. Accepting the curvature-independent solid-fluid potential derived from the non-porous reference surface, we analyze the hysteresis features of a series of MCM-41 samples. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many food materials exist in a disordered amorphous solid state due to processing. Therefore, understanding the concept of amorphous state, its important phase transition (i.e., glass transition), and the related phenomena (e.g., enthalpy relaxation) is important to food scientists. Food saccharides, including mono-, di-, oligo-, and polysaccharides, are among the most important major components in food. Focusing on the food saccharides, this review covers important topics related to amorphous solids, including the concept and molecular arrangement of amorphous solid, the formation of amorphous food saccharides, the concept of glass transition and enthalpy relaxation, physical property changes and molecular mobility around the glass transition, measurement of the glass transition and enthalpy relaxation, their mathematical descriptions and models, and influences on food stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass(A (R)) [(CaO)(26.9)(Na2O)(24.4)(SiO2)(46.1)(P2O5)(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass(A (R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass(A (R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass(A (R)) is dominated by a broad amorphous feature around 2.2 A...(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass(A (R)) in SBF a second broad amorphous feature evolves similar to 1.6 A...(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass(A (R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly sensitive and selective detection of volatile organic compounds (VOCs) with fast response time is imperative based on safety requirements, yet often remains a challenge. Herein, we propose an effective solution, preparing a novel gas sensor comprised of amorphous nanoflake arrays (a-NFAs) with specific surface groups. The sensor was produced via an extremely simple process in which a-NFAs of CdO were deposited directly onto an interdigital electrode immersed in a chemical bath under ambient conditions. Upon exposure to a widely used VOC, diethyl ether (DEE), the sensor exhibits excellent performance, more specifically, the quickest response, lowest detection limit and highest selectivity ever reported for DEE as a target gas. The superior gas-sensing properties of the prepared a-NFAs are found to arise from their open trumpet-shaped morphology, defect-rich amorphous nature, and surface CO groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and characterization of new organosilicon derivatives of N3P3Cl6, N3P3[NH(CH2)3Si(OEt)3]6 (1), N3P3[NH(CH2)3Si(OEt)3]3[NCH3(CH2)3CN]3 (2), and N3P3[NH(CH2)3Si(OEt)3]3[HOC6H4(CH2)CN]3 (3) are reported. Pyrolysis of 1, 2, and 3 in air and at several temperatures results in nanostructured materials whose composition and morphology depend on the temperature of pyrolysis and the substituents of the phosphazenes ring. The products stem from the reaction of SiO2 with P2O5, leading to either crystalline Si5(PO4)6O, SiP2O7 or an amorphous phase as the glass Si5(PO4)6O/3SiO2·2P2O5, depending on the temperature and nature of the trimer precursors. From 1 at 800 °C, core−shell microspheres of SiO2 coated with Si5(PO4)6O are obtained, while in other cases, mesoporous or dense structures are observed. Atomic force microscopy examination after deposition of the materials on monocrystalline silicon wafers evidences morphology strongly dependent on the precursors. Isolated islands of size ∼9 nm are observed from 1, whereas dense nanostructures with a mean height of 13 nm are formed from 3. Brunauer−Emmett−Teller measurements show mesoporous materials with low surface areas. The proposed growth mechanism involves the formation of cross-linking structures and of vacancies by carbonization of the organic matter, where the silicon compounds nucleate. Thus, for the first time, unique silicon nanostructured materials are obtained from cyclic phosphazenes containing silicon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le béton conventionnel (BC) a de nombreux problèmes tels que la corrosion de l’acier d'armature et les faibles résistances des constructions en béton. Par conséquent, la plupart des structures fabriquées avec du BC exigent une maintenance fréquent. Le béton fibré à ultra-hautes performances (BFUP) peut être conçu pour éliminer certaines des faiblesses caractéristiques du BC. Le BFUP est défini à travers le monde comme un béton ayant des propriétés mécaniques, de ductilité et de durabilité supérieures. Le BFUP classique comprend entre 800 kg/m³ et 1000 kg/m³ de ciment, de 25 à 35% massique (%m) de fumée de silice (FS), de 0 à 40%m de poudre de quartz (PQ) et 110-140%m de sable de quartz (SQ) (les pourcentages massiques sont basés sur la masse totale en ciment des mélanges). Le BFUP contient des fibres d'acier pour améliorer sa ductilité et sa résistance aux efforts de traction. Les quantités importantes de ciment utilisées pour produire un BFUP affectent non seulement les coûts de production et la consommation de ressources naturelles comme le calcaire, l'argile, le charbon et l'énergie électrique, mais affectent également négativement les dommages sur l'environnement en raison de la production substantielle de gaz à effet de serre dont le gas carbonique (CO[indice inférieur 2]). Par ailleurs, la distribution granulométrique du ciment présente des vides microscopiques qui peuvent être remplis avec des matières plus fines telles que la FS. Par contre, une grande quantité de FS est nécessaire pour combler ces vides uniquement avec de la FS (25 à 30%m du ciment) ce qui engendre des coûts élevés puisqu’il s’agit d’une ressource limitée. Aussi, la FS diminue de manière significative l’ouvrabilité des BFUP en raison de sa surface spécifique Blaine élevée. L’utilisation du PQ et du SQ est également coûteuse et consomme des ressources naturelles importantes. D’ailleurs, les PQ et SQ sont considérés comme des obstacles pour l’utilisation des BFUP à grande échelle dans le marché du béton, car ils ne parviennent pas à satisfaire les exigences environnementales. D’ailleurs, un rapport d'Environnement Canada stipule que le quartz provoque des dommages environnementaux immédiats et à long terme en raison de son effet biologique. Le BFUP est généralement vendu sur le marché comme un produit préemballé, ce qui limite les modifications de conception par l'utilisateur. Il est normalement transporté sur de longues distances, contrairement aux composantes des BC. Ceci contribue également à la génération de gaz à effet de serre et conduit à un coût plus élevé du produit final. Par conséquent, il existe le besoin de développer d’autres matériaux disponibles localement ayant des fonctions similaires pour remplacer partiellement ou totalement la fumée de silice, le sable de quartz ou la poudre de quartz, et donc de réduire la teneur en ciment dans BFUP, tout en ayant des propriétés comparables ou meilleures. De grandes quantités de déchets verre ne peuvent pas être recyclées en raison de leur fragilité, de leur couleur, ou des coûts élevés de recyclage. La plupart des déchets de verre vont dans les sites d'enfouissement, ce qui est indésirable puisqu’il s’agit d’un matériau non biodégradable et donc moins respectueux de l'environnement. Au cours des dernières années, des études ont été réalisées afin d’utiliser des déchets de verre comme ajout cimentaire alternatif (ACA) ou comme granulats ultrafins dans le béton, en fonction de la distribution granulométrique et de la composition chimique de ceux-ci. Cette thèse présente un nouveau type de béton écologique à base de déchets de verre à ultra-hautes performances (BEVUP) développé à l'Université de Sherbrooke. Les bétons ont été conçus à l’aide de déchets verre de particules de tailles variées et de l’optimisation granulaire de la des matrices granulaires et cimentaires. Les BEVUP peuvent être conçus avec une quantité réduite de ciment (400 à 800 kg/m³), de FS (50 à 220 kg/m³), de PQ (0 à 400 kg/m³), et de SQ (0-1200 kg/m³), tout en intégrant divers produits de déchets de verre: du sable de verre (SV) (0-1200 kg/m³) ayant un diamètre moyen (d[indice inférieur 50]) de 275 µm, une grande quantité de poudre de verre (PV) (200-700 kg/m³) ayant un d50 de 11 µm, une teneur modérée de poudre de verre fine (PVF) (50-200 kg/m³) avec d[indice inférieur] 50 de 3,8 µm. Le BEVUP contient également des fibres d'acier (pour augmenter la résistance à la traction et améliorer la ductilité), du superplastifiants (10-60 kg/m³) ainsi qu’un rapport eau-liant (E/L) aussi bas que celui de BFUP. Le remplacement du ciment et des particules de FS avec des particules de verre non-absorbantes et lisse améliore la rhéologie des BEVUP. De plus, l’utilisation de la PVF en remplacement de la FS réduit la surface spécifique totale nette d’un mélange de FS et de PVF. Puisque la surface spécifique nette des particules diminue, la quantité d’eau nécessaire pour lubrifier les surfaces des particules est moindre, ce qui permet d’obtenir un affaissement supérieur pour un même E/L. Aussi, l'utilisation de déchets de verre dans le béton abaisse la chaleur cumulative d'hydratation, ce qui contribue à minimiser le retrait de fissuration potentiel. En fonction de la composition des BEVUP et de la température de cure, ce type de béton peut atteindre des résistances à la compression allant de 130 à 230 MPa, des résistances à la flexion supérieures à 20 MPa, des résistances à la traction supérieure à 10 MPa et un module d'élasticité supérieur à 40 GPa. Les performances mécaniques de BEVUP sont améliorées grâce à la réactivité du verre amorphe, à l'optimisation granulométrique et la densification des mélanges. Les produits de déchets de verre dans les BEVUP ont un comportement pouzzolanique et réagissent avec la portlandite générée par l'hydratation du ciment. Cependant, ceci n’est pas le cas avec le sable de quartz ni la poudre de quartz dans le BFUP classique, qui réagissent à la température élevée de 400 °C. L'addition des déchets de verre améliore la densification de l'interface entre les particules. Les particules de déchets de verre ont une grande rigidité, ce qui augmente le module d'élasticité du béton. Le BEVUP a également une très bonne durabilité. Sa porosité capillaire est très faible, et le matériau est extrêmement résistant à la pénétration d’ions chlorure (≈ 8 coulombs). Sa résistance à l'abrasion (indice de pertes volumiques) est inférieure à 1,3. Le BEVUP ne subit pratiquement aucune détérioration aux cycles de gel-dégel, même après 1000 cycles. Après une évaluation des BEVUP en laboratoire, une mise à l'échelle a été réalisée avec un malaxeur de béton industriel et une validation en chantier avec de la construction de deux passerelles. Les propriétés mécaniques supérieures des BEVUP a permis de concevoir les passerelles avec des sections réduites d’environ de 60% par rapport aux sections faites de BC. Le BEVUP offre plusieurs avantages économiques et environnementaux. Il réduit le coût de production et l’empreinte carbone des structures construites de béton fibré à ultra-hautes performances (BFUP) classique, en utilisant des matériaux disponibles localement. Il réduit les émissions de CO[indice inférieur 2] associées à la production de clinkers de ciment (50% de remplacement du ciment) et utilise efficacement les ressources naturelles. De plus, la production de BEVUP permet de réduire les quantités de déchets de verre stockés ou mis en décharge qui causent des problèmes environnementaux et pourrait permettre de sauver des millions de dollars qui pourraient être dépensés dans le traitement de ces déchets. Enfin, il offre une solution alternative aux entreprises de construction dans la production de BFUP à moindre coût.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'industrie du ciment est l'une des principales sources d'émission de dioxyde de carbone. L'industrie mondiale du ciment contribue à environ 7% des émissions de gaz à effet de serre dans l'atmosphère. Afin d'aborder les effets environnementaux associés à la fabrication de ciment exploitant en permanence les ressources naturelles, il est nécessaire de développer des liants alternatifs pour fabriquer du béton durable. Ainsi, de nombreux sous-produits industriels ont été utilisés pour remplacer partiellement le ciment dans le béton afin de générer plus d'économie et de durabilité. La performance d'un additif de ciment est dans la cinétique d'hydratation et de la synergie entre les additions et de ciment Portland. Dans ce projet, deux sous-produits industriels sont étudiés comme des matériaux cimentaires alternatifs: le résidu de silice amorphe (RSA) et les cendres des boues de désencrage. Le RSA est un sous-produit de la production de magnésium provenant de l'Alliance Magnésium des villes d'Asbestos et Thedford Mines, et les cendres des boues de désencrage est un sous-produit de la combustion des boues de désencrage, l'écorce et les résidus de bois dans le système à lit fluidisé de l'usine de Brompton située près de Sherbrooke, Québec, Canada. Récemment, les cendres des boues de désencrage ont été utilisées comme des matériaux cimentaires alternatifs. L'utilisation de ces cendres comme matériau cimentaire dans la fabrication du béton conduit à réduire la qualité des bétons. Ces problèmes sont causés par des produits d'hydratation perturbateurs des cendres volantes de la biomasse quand ces cendres sont partiellement mélangées avec du ciment dans la fabrication du béton. Le processus de pré-mouillage de la cendre de boue de désencrage avant la fabrication du béton réduit les produits d'hydratation perturbateurs et par conséquent les propriétés mécaniques du béton sont améliorées. Les approches pour étudier la cendre de boue de désencrage dans ce projet sont : 1) caractérisation de cette cendre volante régulière et pré-humidifiée, 2) l'étude de la performance du mortier et du béton incorporant cette cendre volante régulière et pré-humidifiée. Le RSA est un nouveau sous-produit industriel. La haute teneur en silice amorphe en RSA est un excellent potentiel en tant que matériau cimentaire dans le béton. Dans ce projet, l'évaluation des RSA comme matériaux cimentaires alternatifs compose trois étapes. Tout d'abord, la caractérisation par la détermination des propriétés minéralogiques, physiques et chimiques des RSA, ensuite, l'optimisation du taux de remplacement du ciment par le RSA dans le mortier, et enfin l'évaluation du RSA en remplacement partiel du ciment dans différents types de béton dans le système binaire et ternaire. Cette étude a révélé que le béton de haute performance (BHP) incorporant le RSA a montré des propriétés mécaniques et la durabilité, similaire du contrôle. Le RSA a amélioré les propriétés des mécaniques et la durabilité du béton ordinaire (BO). Le béton autoplaçant (BAP) incorporant le RSA est stable, homogène et a montré de bonnes propriétés mécaniques et la durabilité. Le RSA avait une bonne synergie en combinaison de liant ternaire avec d'autres matériaux cimentaires supplémentaires. Cette étude a montré que le RSA peut être utilisé comme nouveaux matériaux cimentaires dans le béton.