874 resultados para Aluminium toxicity
Resumo:
The introduction of Registration, Evaluation and Authorisation of Chemicals (REACH), requires companies to register and risk assess all substances produced or imported in volumes of >1 tonne per year. Extrapolation methods which use existing data for estimating the effects of chemicals are attractive to industry, and comparative data are therefore increasingly in demand. Data on natural toxic chemicals could be used for extrapolation methods Such as read-across. To test this hypothesis, the toxicity of natural chemicals and their synthetic analogues were compared using standardised toxicity tests. Two chemical pairs: the napthoquinones, juglone (natural) and 1,4-naphthoquinone (synthetic); and anthraquinones, emodin (natural) and quinizarin (synthetic) were chosen, and their comparative effects on the survival and reproduction of collembolans, earthworms, enchytraeids and predatory mites were assessed. Differences in sensitivity between the species were observed with the predatory mite (Hypoaspis aculeifer) showing the least sensitivity. Within the chemical pairs, toxicity to lethal and sub-lethal endpoints was very similar for the four invertebrate species. The exception was earthworm reproduction, which showed differential sensitivity to the chemicals in both naphthoquinone and anthraquinone pairs. Differences in toxicity identified in the present study may be related to degree of exposure and/or subtle differences in the mode of toxic action for the chemicals and species tested. It may be possible to predict differences by identifying functional groups which infer increased or decreased toxicity in one or other chemical. The development of such techniques would enable the use of read-across from natural to synthetic chemicals for a wider group of compounds. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This toxicology update reviews research over the past four years since publication in 2004 of the first measurement of intact esters of p-hydroxybenzoic acid (parabens) in human breast cancer tissues, and the suggestion that their presence in the human body might originate from topical application of bodycare cosmetics. The presence of intact paraben esters in human body tissues has now been confirmed by independent measurements in human urine, and the ability of parabens to penetrate human skin intact without breakdown by esterases and to be absorbed systemically has been demonstrated through studies not only in vitro but also in vivo using healthy human subjects. Using a wide variety of assay systems in vitro and in vivo, the oestrogen agonist properties of parabens together with their common metabolite (p-hydroxybenzoic acid) have been extensively documented, and, in addition, the parabens have now also been shown to possess androgen antagonist activity, to act as inhibitors of sulfotransferase enzymes and to possess genotoxic activity. With the continued use of parabens in the majority of bodycare cosmetics, there is a need to carry out detailed evaluation of the potential for parabens, together with other oestrogenic and genotoxic co-formulants of bodycare cosmetics, to increase female breast cancer incidence, to interfere with male reproductive functions and to influence development of malignant melanoma which has also recently been shown to be influenced by oestrogenic stimulation. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Aluminium is omnipresent in everyday life and increased exposure is resulting in a burgeoning body burden of this non-essential metal. Personal care products are potential contributors to the body burden of aluminium and recent evidence has linked breast cancer with aluminium-based antiperspirants. We have used graphite furnace atomic absorption spectrometry (GFAAS) to measure the aluminium content in breast biopsies obtained following mastectomies. The aluminium content of breast tissue and breast tissue fat were in the range 4-437 nmol/g dry wt. and 3-192 nmol/g oil, respectively. The aluminium content of breast tissue in the outer regions (axilla and lateral) was significantly higher (P = 0.033) than the inner regions (middle and medial) of the breast. Whether differences in the regional distribution of aluminium in the breast are related to the known higher incidence of tumours in the outer upper quadrant of the breast remains to be ascertained. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The non-steroidal anti-inflammatory drug (NSAID) ibuprofen (IB) is a widely used pharmaceutical that can be found in several freshwater ecosystems. Acute toxicity studies with Daphnia magna suggest that the 48 h EC50 (immobilisation) is 10-100 mg IB l(-1). However, there are currently no chronic IB toxicity dataon arthropod populations, and the aquatic life impacts of such analgesic drugs are still undefined. We performed a 14-day exposure of D. magna to IB as a model compound (concentration range: 0, 20, 40 and 80 mg IB l(-1)) measuring chronic effects on life history traits and population performance. Population growth rate was significantly reduced at all IB concentrations, although survival was only affected at 80 mg IB l(-1). Reproduction, however, was affected at lower concentrations of IB (14-day EC50 of 13.4 mg IB l(-1)), and was completely inhibited at the highest test concentration. The results from this study indicate that the long-term crustacean population consequences of a chronic IB exposure at environmentally realistic concentrations (ng l(-1) to mu g l(-1)) would most likely be of minor importance. We discuss our results in relation to recent genomic studies, which suggest that the potential mechanism of toxicity in Daphnia is similar to the mode of action in mammals, where IB inhibits eicosanoid biosynthesis. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metal I oestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Groundwater is an important resource in the UK, with 45% of public water supplies in the Thames Water region derived from subterranean sources. In urban areas, groundwater has been affected by onthropogenic activities over 0 long period of time and from a multitude of sources, At present, groundwater quality is assessed using a range of chemical species to determine the extent of contamination. However, analysing a complex mixture of chemicals is time-consuming and expensive, whereas the use of an ecotoxicity test provides information on (a) the degree of pollution present in the groundwater and (b) the potential effect of that pollution. Microtox (TM), Eclox (TM) and Daphnia magna microtests were used in conjunction with standard chemical protocols to assess the contamination of groundwaters from sites throughout the London Borough of Hounslow and nearby Heathrow Airport. Because of their precision, range of responses and ease of use, Daphnia magna and Microfox (TM) tests are the bioassays that appear to be most effective for assessing groundwater toxicity However, neither test is ideal because it is also essential to monitor water hardness. Eclox (TM) does not appear to be suitable for use in groundwater-quality assessment in this area, because it is adversely affected by high total dissolved solids and electrical conductivity.
Resumo:
Acetylcholinesterase (AChE) activity was measured in Daphnia magna that had been exposed to four organophosphates (OPs; parathion, chlorpyrifos, malathion, and acephate) and one carbamate (propoxur) for 48 h. These results were related to acute toxicity (median effective concentration [EC50] for immobility). For the four OPs, the EC50s were 7.03 pM, 3.17 pM, 10.56 pM, and 309.82 muM, respectively. The EC50 for propoxur was 449.90 pM. Reduction in AChE activity was directly related to an increase in immobility in all chemicals tested. However, the ratio between the EC50 and the AChE median inhibiting concentration ranged from 0.31 to 0.90. A 50% reduction in AChE activity generally was associated with detrimental effects on mobility. However, for acephate, high levels of AChE inhibition (70%) were observed in very low concentrations and were not associated with immobility. In addition, increasing the concentration of acephate further had a slight negative effect oil AChE activity but a Strong detrimental effect on mobility. Binding sites other than AChE possibly are involved in acephate toxicity to D. magna. Our findings demonstrate different associations between AChE inhibition and toxicity when different chemicals are compared. Therefore, the value of using AChE activity as a biomarker in D. magna will be dependent on the chemical tested.
Resumo:
A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.
Resumo:
Multivariate statistical methods were used to investigate file Causes of toxicity and controls on groundwater chemistry from 274 boreholes in an Urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and Sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations. and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoinacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional Scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.
Resumo:
This study was designed to test the feasibility of integrating in situ, single species exposures and biomarker analysis into microcosm studies. Experimental ponds were dosed with pirimiphos methyl (PM) and lindane. C. riparius fourth instar larvae were deployed for 48 h on nine separate occasions during the study period before and after treatment. Surviving larvae were analysed for acetylcholinesterase activity (AChE). Survival and biomarker data were compared to chironomid assemblage analysis by monitoring insects emerging from the microcosms. Survival of chironomids within the in situ systems commenced on day + 16 after treatment with 31.6% and 53.3% survival in the lindane and PM treated ponds, respectively. In contrast, the first emergence from the microcosms occurred on days + 27, in respect to lindane, and + 59 for the PM treated ponds. Thus the in situ bioassay was able to demonstrate gradual reduction in toxicity within the sediment before this was evident from macroinvertebrate monitoring. Significant ACNE inhibition was only detected on exposure to PM. Levels decreased from 75% on day + 16 to 26% by day +29. The biomarker analysis confirmed that, by the end of the study, the insecticide was no longer exerting an effect. We discuss how the use of in situ bioassays could also aid comparison of microcosm studies by adding a standardized dimension. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Part IIA of the Environmental Protection Act 1990 requires environmental regulators to assess the risk of contaminants leaching from soils into groundwater (DETR, 1999). This newly introduced legislation assumes a link between soil and groundwater chemistry, in which rainwater leaches contaminants from soil into the saturated zone. As the toxicity of both groundwater and overlying soils is dependent upon the chemicals present, their partitioning and their bioavailability, similar patterns of soil, leachates and groundwater toxicity should be observed at contaminated sites. Soil and groundwater samples were collected from different contaminated land sites in an urban area, and used to determine relationships between soil chemistry and toxicity, mobility of contaminants, and groundwater chemistry and toxicity. Soils were leached using water to mimic rainfall, and both the soils and leachates tested using bioassays. Soil bioassays were carried out using Eisenia fetida, whilst groundwater and leachates were tested using the Microtox(TM) test system and Daphnia magna 48 h acute tests. Analysis of the bioassay responses demonstrated that a number of the samples were toxic to test organisms, however, there were no significant statistical relationships between soil, groundwater and leachate toxicity. Nor were there significant correlations between soil, leachates and groundwater chemistry.
Resumo:
Molybdenum(II) complexes [MOX(CO)(2)(eta(3)-allyl)(CH3CN)(2)] (X = Cl or Br) were encapsulated in an aluminium-pillared natural clay or a porous clay heterostructure and allowed to react with bidentate diimine ligands. All the materials obtained were characterised by several solid-state techniques. Powder XRD, and Al-27 and Si-29 MAS NMR were used to investigate the integrity of the pillared clay during the modification treatments. C-13 CP MAS NMR, FTIR, elemental analyses and low-temperature nitrogen adsorption showed that the immobilisation of the precursor complexes was successful as well as the in situ ligand-substitution reaction. The new complex [MoBr(CO)(2)(eta(3)-allyl)(2-aminodipyridyl)] was characterised by single-crystal X-ray diffraction and spectroscopic techniques, and NMR studies were used to investigate its fluxional behaviour in solution. The prepared materials are active for the oxidation of cis-cyclooctene using tert-butyl hydroperoxide as oxidant, though the activity of the isolated complexes is higher. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
The title compound, [Al(HPO4)(H2PO4)(C10H8N2)]n, consists of AlO4N2 octahedra vertex-linked to H2PO4 and HPO4 tetrahedra to form layers based on a (4,12)- net. The layers stack in an AAA fashion, held in place by pi-pi interactions between 2,2 '-bipyridine molecules coordinated to Al atoms in adjacent layers.
Resumo:
The dehydriding and rehydriding of sodium aluminium hydride, NaAlR4, is kinetically enhanced and rendered reversible in the solid state upon doping with a small amount of catalyst species, such as titanium, zirconium or tin. The catalyst doped hydrides appear to be good candidates for development as hydrogen carriers for onboard proton exchange membrane (PEM) fuel cells because of their relatively low operation temperatures (120-150 degrees C) and high hydrogen carrying capacities (4-5 wt.%). However, the nature of the active catalyst species and the mechanism of catalytic action are not yet known. In particular, using combinations of Ti and Sri compounds as dopants, a cooperative catalyst effect of the metals Ti and Sn in enhancing the hydrogen uptake and release kinetics is hereby reported. In this paper, characterization techniques including XRD, XPS, TEM, EDS and SEM have been applied on this material. The results suggest that the solid state phase changes during the hydriding and dehydriding processes are assisted through the interaction of a surface catalyst. A mechanism is proposed to explain the catalytic effect of the Sn/Ti double dopants on this hydride.
Resumo:
This paper is concerned with the effects of adding tin and/or titanium dopant to sodium aluminium hydride for both dehydrogenation and re-hydrogenation reactions during their reversible storage of molecular hydrogen. Temperature programmed decomposition (TPD) measurements show that the dehydrogenation kinetics of NaAlH4 are significantly enhanced upon doping the material with 2 mol% of tributyltin hydride, Sn(Bu)(3)H but the tin catalyst dopant is shown to be inferior than titanium. On the other hand, in this preliminary work, a significant synergetic catalytic effect is clearly revealed in material co-doped with both titanium and tin catalysts which shows the highest reversible rates of dehydrogenation and re-hydrogenation (after their hydrogen depletion). The re-hydrogenation rates of depleted Sn/Ti/NaAlH4 evaluated at both 9.5 and 140 bars hydrogen are also found to be favourable compared to the Ti/NaAlH4, which clearly suggest the importance of the catalyst choice. Basing on these results some mechanistic insights for the catalytic reversible dehydrogenation and re-hydrogenation processes of Sn/Ti/NaAlH4 are therefore made. (C) 2006 Elsevier Ltd. All rights reserved.