918 resultados para All solid-state
Resumo:
Thermal or chemical treatment of crystalline 4,4-bipyridinium salts of [MCl4]2- (M=Co, Zn, Fe, or Pt) leads to HCl loss and formation of coordination network solids [{MCl2(4,4-bipy)}n]. For M=Co, Zn, and Fe, these solids can also be prepared by mechanochemical means. Their exposure to HCl vapor or the mechanochemical reaction of metal dichlorides with [4,4-H2bipy]Cl2 gives [4,4-H2bipy]2+ salts of [CoCl4]2-, [ZnCl4]2-, and, for the first time, [FeCl4]2-.
Resumo:
Single helical [(CuL)-L-I]ClO4.12CH(2)Cl(2) (L=1:2 condensate of benzil dihydrazone and 2-acetylpyridine) unfolds and coils up in CH2Cl2 solution to generate double helical [(Cu2L2)-L-I](2+).
Resumo:
The terminally protected tripeptide Boc-Ala(1)-Leu(2)-Ala(3)-OMe 1 forms antiparallel hydrogen-bonded dimers of two different conformers in the asymmetric unit and the individual dimers then self-associate to form supramolecular beta-sheet structures in crystals and amyloid-like fibrils in the solid state.
Resumo:
The X-ray crystal structure of the 1:2 condensate (1) of hydrazine hydrate and 4-methyl-imidazole-5-carboxaldehyde has been determined. The molecule is centrosymmetric crystallising in the space group Fddd with cell dimensions: a = 10.557(14), b = 17.062(22), c = 24.759(27) angstrom. Fourier map shows that the NH hydrogen atom of each imidazole moiety has equal possibility of occupying any of its two ring N atoms. This poses the possibility of finding three tautomers in 1 in the solid state. Consideration of the H-bonding pattern observed in 1 and related B3LYP/6-311+G(2d, p) calculations show that only two tautomers are present in the solid state. The situation is compared with that in the structure of 4(5)-nitro-5(4)-methoxy-imidazole reported previously by Kubicki.
Resumo:
Single crystal X-ray diffraction studies show that the extended structure of dipeptide I Boc-beta-Ala-m-ABA-OMe (m-ABA: meta-aminobenzoic acid) self-assembles in the solid state by intermolecular hydrogen bonding to create an infinite parallel P-sheet structure. In dipeptide II Boc-gamma-Abu-m-ABA-OMe (gamma-Abu: gamma-aminobutyric acid), two such parallel beta-sheets are further cross-linked by intermolecular hydrogen bonding through m-aminobenzoic acid moieties. SEM (scanning electron microscopy) studies reveal that both the peptides I and II form amyloid-like fibrils in the solid state. The fibrils are also found to be stained readily by Congo red, a characteristic feature of the amyloid fiber whose accumulation causes several fatal diseases such as Alzheimer's, prion-protein etc.
Resumo:
Single crystal X-ray diffraction studies show that the beta-turn structure of tetrapeptide I, Boc-Gly-Phe-Aib-Leu-OMe (Aib: alpha-amino isobutyric acid) self-assembles to a supramolecular helix through intermolecular hydrogen bonding along the crystallographic a axis. By contrast the beta-turn structure of an isomeric tetrapeptide II, Boc-Gly-Leu-Aib-Phe-OMe self-assembles to a supramolecular beta-sheet-like structure via a two-dimensional (a, b axis) intermolecular hydrogen bonding network and pi-pi interactions. FT-IR studies of the peptides revealed that both of them form intermolecularly hydrogen bonded supramolecular structures in the solid state. Field emission scanning electron micrographs (FE-SEM) of the dried fibrous materials of the peptides show different morphologies, non-twisted filaments in case of peptide I and non-twisted filaments and ribbon-like structures in case of peptide II.
Resumo:
Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.
Resumo:
The morphology in the solid state of a series of triblock copolymers comprising a poly(ethylene glycol) (PEG) midblock and symmetric poly(gamma-benzyl-L-glutamate) (PBLG) end blocks has been studied using X-ray scattering and microscopy techniques. Transmission electron microscopy (TEM) on samples selectively stained with uranyl acetate provided clear assignment of morphologies for as-cast and annealed samples. The thickness of both PEG and PBLG domains was in good agreement with calculations based on the conformations of the respective chains, allowing for the crystal or amorphous state of PEG and the a-helical or P-sheet structure of the PBLG. Atomic force microscopy provided complementary information on surface morphology for several samples that was in good agreement with the structure observed by TEM. A morphology diagram was constructed. Cylindrical structures were observed for ordered samples with low f(PBLG), whereas at higher f(PLBG) there was evidence for broken lamellar and "hockey puck" nanostructures. Regular lamellae were observed for intermediate compositions.
Resumo:
The self-assembly of a terminally protected tripeptide Boc-gamma-Abu(1)-Ala(2)-Trp(3)-OMe (gamma-Abu = gamma-aminobutyric acid) I results in the formation of a nanostructured supramolecular zipper through various non-covalent interactions in the crystal in which the indole side-chain of the Trp(3) residue plays a key role via N-H...pi interactions. (c) 2006 Published by Elsevier Ltd.
Resumo:
Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation. (C) 2004 Wiley Periodicals, Inc.
Resumo:
A novel wide-band noise source for millimetre-wave spectrometry is described. It uses power combined Schottky diodes, reverse biased to avalanche breakdown, mounted in a wide-band tapered slot antenna. Power has been produced from 15 to 200 GHz with an equivalent temperature of 28200 K at 40 GHz.
Resumo:
[(VO)-O-IV(acac) 2] reacts with the methanol solution of tridentate ONO donor hydrazone ligands (H2L1-4, general abbreviation H2L; are derived from the condensation of benzoyl hydrazine with 2-hydroxyacetophenone and its 5-substituted derivatives) in presence of neutral monodentate alkyl amine bases having stronger basicity than pyridine e. g., ethylamine, diethylamine, triethylamine and piperidine (general abbreviation B) to produce BH+[VO2L] (1-16) complexes. Five of these sixteen complexes are structurally characterized revealing that the vanadium is present in the anionic part of the molecule, [VO2L] in a distorted square pyramidal environment. The complexes 5, 6, 15 and 16 containing two H-atoms associated with the amine-N atom in their cationic part (e. g., diethylammonium and piperidinium ion) are involved in H-bonding with a neighboring molecule resulting in the formation of centrosymmetric dimers while the complex 12 (containing only one hydrogen atom in the cationic part) exhibits normal H-bonding. The nature of the H-bonds in each of the four centrosymmetric dimeric complexes is different. These complexes have potential catalytic activity in the aerial oxidation of L-ascorbic acid and are converted into the [VO(L)(hq)] complexes containing VO3+ motif on reaction with equimolar amount of 8-hydroxyquinoline (Hhq) in methanol.
Resumo:
Three Cu(II)-azido complexes of formula [Cu2L2(N-3)(2)] (1), [Cu2L2(N-3)(2)]center dot H2O (2) and [CuL(N-3)](n) (3) have been synthesized using the same tridentate Schiff base ligand HL (2-[(3-methylaminopropylimino)-methyl]-phenol), the condensation product of N-methyl-1,3-propanediamine and salicyldehyde). Compounds 1 and 2 are basal-apical mu-1,1 double azido bridged dimers. The dimeric structure of 1 is centro-symmetric but that of 2 is non-centrommetric. Compound 3 is a mu-1,1 single azido bridged 1D chain. The three complexes interconvert in solution and can be obtained in pure form by carefully controlling the synthetic conditions. Compound 2 undergoes an irreversible transformation to 1 upon dehydration in the solid state. The magnetic properties of compounds 1 and 2 show the presence of weak antiferromagnetic exchange interactions mediated by the double 1,1-N-3 azido bridges (J = -2.59(4) and -0.10(1) cm-(1), respectively). The single 1,1-N-3 bridge in compound 3 mediates a negligible exchange interaction.
Resumo:
The self-assembly of proteins and peptides into b-sheet-rich amyloid fibers is a process that has gained notoriety because of its association with human diseases and disorders. Spontaneous self-assembly of peptides into nonfibrillar supramolecular structures can also provide a versatile and convenient mechanism for the bottom-up design of biocompatible materials with functional properties favoring a wide range of practical applications.[1] One subset of these fascinating and potentially useful nanoscale constructions are the peptide nanotubes, elongated cylindrical structures with a hollow center bounded by a thin wall of peptide molecules.[2] A formidable challenge in optimizing and harnessing the properties of nanotube assemblies is to gain atomistic insight into their architecture, and to elucidate precisely how the tubular morphology is constructed from the peptide building blocks. Some of these fine details have been elucidated recently with the use of magic-angle-spinning (MAS) solidstate NMR (SSNMR) spectroscopy.[3] MAS SSNMR measurements of chemical shifts and through-space interatomic distances provide constraints on peptide conformation (e.g., b-strands and turns) and quaternary packing. We describe here a new application of a straightforward SSNMR technique which, when combined with FTIR spectroscopy, reports quantitatively on the orientation of the peptide molecules within the nanotube structure, thereby providing an additional structural constraint not accessible to MAS SSNMR.
Resumo:
Organo-copper(I) halide complexes with a Cu4I4 cubane core and cyclic amines as ligands have been synthesized and their crystal structures have been defined. Their solid state photophysical properties have been measured and correlated with the crystal structure and packing. A unique and remarkably high luminescence quantum yield (76%) has been measured for one of the complexes having the cubane clusters arranged in a columnar structure and held together by N–HI hydrogen bonds. This high luminescence quantum yield is correlated with a slow radiationless deactivation rate of the excited state and suggests a rather strong enhancement of the cubane core rigidity bestowed by the hydrogen bond pattern. Some preliminary thin film deposition experiments show that these compounds could be considered to be good candidates for applications in electroluminescent devices because of their bright luminescence, low cost and relatively easy synthesis processes