908 resultados para Algoritmos transgenéticos
Resumo:
Os Sistemas Multi-Robôs proporcionam vantagens sobre um robô individual, quando da realização de uma tarefa com maiores velocidade, precisão e tolerância a falhas. Os estudos dos comportamentos sociais na natureza têm permitido desenvolver algoritmos bio-inspirados úteis na área da robótica de enxame. Seguindo instruções simples e repetitivas, grupos de robôs, fisicamente limitados, conseguem solucionar problemas complexos. Quando existem duas ou mais tarefas a serem realizadas e o conjunto de robôs é heterogêneo, é possível agrupá-los de acordo com as funcionalidades neles disponíveis. No caso em que o conjunto de robôs é homogêneo, o agrupamento pode ser realizado considerando a posição relativa do robô em relação a uma tarefa ou acrescentando alguma característica distintiva. Nesta dissertação, é proposta uma técnica de clusterização espacial baseada simplesmente na comunicação local de robôs. Por meio de troca de mensagens entre os robôs vizinhos, esta técnica permite formar grupos de robôs espacialmente próximos sem precisar movimentar os robôs. Baseando-se nos métodos de clusterização de fichas, a técnica proposta emprega a noção de fichas virtuais, que são chamadas de cargas, sendo que uma carga pode ser estática ou dinâmica. Se uma carga é estática permite determinar a classe à qual um robô pertence. Dependendo da quantidade e do peso das cargas disponíveis no sistema, os robôs intercambiam informações até alcançar uma disposição homogênea de cargas. Quando as cargas se tornam estacionárias, é calculada uma densidade que permite guiar aquelas que estão ainda em movimento. Durante as experiências, foi observado visualmente que as cargas com maior peso acabam se agrupando primeiro enquanto aquelas com menor peso continuam se deslocando no enxame, até que estas cargas formem faixas de densidades diferenciadas para cada classe, alcançando assim o objetivo final que é a clusterização dos robôs.
Resumo:
A renderização de volume direta tornou-se uma técnica popular para visualização volumétrica de dados extraídos de fontes como simulações científicas, funções analíticas, scanners médicos, entre outras. Algoritmos de renderização de volume, como o raycasting, produzem imagens de alta qualidade. O seu uso, contudo, é limitado devido à alta demanda de processamento computacional e o alto uso de memória. Nesse trabalho, propomos uma nova implementação do algoritmo de raycasting que aproveita a arquitetura altamente paralela do processador Cell Broadband Engine, com seus 9 núcleos heterogêneos, que permitem renderização eficiente em malhas irregulares de dados. O poder computacional do processador Cell BE demanda um modelo de programação diferente. Aplicações precisam ser reescritas para explorar o potencial completo do processador Cell, que requer o uso de multithreading e código vetorizado. Em nossa abordagem, enfrentamos esse problema distribuindo a computação de cada raio incidente nas faces visíveis do volume entre os núcleos do processador, e vetorizando as operações da integral de iluminação em cada um. Os resultados experimentais mostram que podemos obter bons speedups reduzindo o tempo total de renderização de forma significativa.
Resumo:
Métodos de otimização que utilizam condições de otimalidade de primeira e/ou segunda ordem são conhecidos por serem eficientes. Comumente, esses métodos iterativos são desenvolvidos e analisados à luz da análise matemática do espaço euclidiano n-dimensional, cuja natureza é de caráter local. Consequentemente, esses métodos levam a algoritmos iterativos que executam apenas as buscas locais. Assim, a aplicação de tais algoritmos para o cálculo de minimizadores globais de uma função não linear,especialmente não-convexas e multimodais, depende fortemente da localização dos pontos de partida. O método de Otimização Global Topográfico é um algoritmo de agrupamento, que utiliza uma abordagem baseada em conceitos elementares da teoria dos grafos, a fim de gerar bons pontos de partida para os métodos de busca local, a partir de pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem dois objetivos. O primeiro é realizar uma nova abordagem sobre método de Otimização Global Topográfica, onde, pela primeira vez, seus fundamentos são formalmente descritos e suas propriedades básicas são matematicamente comprovadas. Neste contexto, propõe-se uma fórmula semi-empírica para calcular o parâmetro chave deste algoritmo de agrupamento, e, usando um método robusto e eficiente de direções viáveis por pontos-interiores, estendemos o uso do método de Otimização Global Topográfica a problemas com restrições de desigualdade. O segundo objetivo é a aplicação deste método para a análise de estabilidade de fase em misturas termodinâmicas,o qual consiste em determinar se uma dada mistura se apresenta em uma ou mais fases. A solução deste problema de otimização global é necessária para o cálculo do equilíbrio de fases, que é um problema de grande importância em processos da engenharia, como, por exemplo, na separação por destilação, em processos de extração e simulação da recuperação terciária de petróleo, entre outros. Além disso, afim de ter uma avaliação inicial do potencial dessa técnica, primeiro vamos resolver 70 problemas testes, e então comparar o desempenho do método proposto aqui com o solver MIDACO, um poderoso software recentemente introduzido no campo da otimização global.
Resumo:
Diversas das possíveis aplicações da robótica de enxame demandam que cada robô seja capaz de estimar a sua posição. A informação de localização dos robôs é necessária, por exemplo, para que cada elemento do enxame possa se posicionar dentro de uma formatura de robôs pré-definida. Da mesma forma, quando os robôs atuam como sensores móveis, a informação de posição é necessária para que seja possível identificar o local dos eventos medidos. Em virtude do tamanho, custo e energia dos dispositivos, bem como limitações impostas pelo ambiente de operação, a solução mais evidente, i.e. utilizar um Sistema de Posicionamento Global (GPS), torna-se muitas vezes inviável. O método proposto neste trabalho permite que as posições absolutas de um conjunto de nós desconhecidos sejam estimadas, com base nas coordenadas de um conjunto de nós de referência e nas medidas de distância tomadas entre os nós da rede. A solução é obtida por meio de uma estratégia de processamento distribuído, onde cada nó desconhecido estima sua própria posição e ajuda os seus vizinhos a calcular as suas respectivas coordenadas. A solução conta com um novo método denominado Multi-hop Collaborative Min-Max Localization (MCMM), ora proposto com o objetivo de melhorar a qualidade da posição inicial dos nós desconhecidos em caso de falhas durante o reconhecimento dos nós de referência. O refinamento das posições é feito com base nos algoritmos de busca por retrocesso (BSA) e de otimização por enxame de partículas (PSO), cujos desempenhos são comparados. Para compor a função objetivo, é introduzido um novo método para o cálculo do fator de confiança dos nós da rede, o Fator de Confiança pela Área Min-Max (MMA-CF), o qual é comparado com o Fator de Confiança por Saltos às Referências (HTA-CF), previamente existente. Com base no método de localização proposto, foram desenvolvidos quatro algoritmos, os quais são avaliados por meio de simulações realizadas no MATLABr e experimentos conduzidos em enxames de robôs do tipo Kilobot. O desempenho dos algoritmos é avaliado em problemas com diferentes topologias, quantidades de nós e proporção de nós de referência. O desempenho dos algoritmos é também comparado com o de outros algoritmos de localização, tendo apresentado resultados 40% a 51% melhores. Os resultados das simulações e dos experimentos demonstram a eficácia do método proposto.
Resumo:
Em 1828 foi observado um fenômeno no microscópio em que se visualizava minúsculos grãos de pólen mergulhados em um líquido em repouso que mexiam-se de forma aleatória, desenhando um movimento desordenado. A questão era compreender este movimento. Após cerca de 80 anos, Einstein (1905) desenvolveu uma formulação matemática para explicar este fenômeno, tratado por movimento Browniano, teoria cada vez mais desenvolvida em muitas das áreas do conhecimento, inclusive recentemente em modelagem computacional. Objetiva-se pontuar os pressupostos básicos inerentes ao passeio aleatório simples considerando experimentos com e sem problema de valor de contorno para melhor compreensão ao no uso de algoritmos aplicados a problemas computacionais. Foram explicitadas as ferramentas necessárias para aplicação de modelos de simulação do passeio aleatório simples nas três primeiras dimensões do espaço. O interesse foi direcionado tanto para o passeio aleatório simples como para possíveis aplicações para o problema da ruína do jogador e a disseminação de vírus em rede de computadores. Foram desenvolvidos algoritmos do passeio aleatório simples unidimensional sem e com o problema do valor de contorno na plataforma R. Similarmente, implementados para os espaços bidimensionais e tridimensionais,possibilitando futuras aplicações para o problema da disseminação de vírus em rede de computadores e como motivação ao estudo da Equação do Calor, embora necessita um maior embasamento em conceitos da Física e Probabilidade para dar continuidade a tal aplicação.
Resumo:
Esta dissertação apresenta resultados da aplicação de filtros adaptativos, utilizando os algoritmos NLMS (Normalized Least Mean Square) e RLS (Recursive Least Square), para a redução de desvios em previsões climáticas. As discrepâncias existentes entre o estado real da atmosfera e o previsto por um modelo numérico tendem a aumentar ao longo do período de integração. O modelo atmosférico Eta é utilizado operacionalmente para previsão numérica no CPTEC/INPE e como outros modelos atmosféricos, apresenta imprecisão nas previsões climáticas. Existem pesquisas que visam introduzir melhorias no modelo atmosférico Eta e outras que avaliam as previsões e identificam os erros do modelo para que seus produtos sejam utilizados de forma adequada. Dessa forma, neste trabalho pretende-se filtrar os dados provenientes do modelo Eta e ajustá-los, de modo a minimizar os erros entre os resultados fornecidos pelo modelo Eta e as reanálises do NCEP. Assim, empregamos técnicas de processamento digital de sinais e imagens com o intuito de reduzir os erros das previsões climáticas do modelo Eta. Os filtros adaptativos nesta dissertação ajustarão as séries ao longo do tempo de previsão. Para treinar os filtros foram utilizadas técnicas de agrupamento de regiões, como por exemplo o algoritmo de clusterização k-means, de modo a selecionar séries climáticas que apresentem comportamentos semelhantes entre si. As variáveis climáticas estudadas são o vento meridional e a altura geopotencial na região coberta pelo modelo de previsão atmosférica Eta com resolução de 40 km, a um nível de pressão de 250 hPa. Por fim, os resultados obtidos mostram que o filtro com 4 coeficientes, adaptado pelo algoritmo RLS em conjunto com o critério de seleção de regiões por meio do algoritmo k-means apresenta o melhor desempenho ao reduzir o erro médio e a dispersão do erro, tanto para a variável vento meridional quanto para a variável altura geopotencial.
Resumo:
Este trabalho apresenta o projeto e os algoritmos de controle, de um sistema de geração de energia híbrido. Este sistema é formado por conversores de potência conectados em Back-to-Back associados a um arranjo solar fotovoltaico, que por sua vez é conectado no lado CC dos conversores. Em relação ao sistema de geração fotovoltaico, a contribuição consiste no desenvolvimento de cinco algoritmos para determinar o ponto de máxima potência (MPP) do arranjo fotovoltaico. O primeiro algoritmo consiste em uma versão modificada do algoritmo de Perturbar e Observar (PeO); o segundo algoritmo proposto é baseado no método do gradiente (MG); e o terceiro é baseado na otimização do MG (MGO). Porém, são desenvolvidos algoritmos híbridos que combinam rede neural com o método PeO, e rede neural com o algoritmo MGO. O sistema foi desenvolvido e simulado utilizando o Matlab/Simulink, e os resultados de simulação são apresentados com objetivo da avaliar o comportamento do sistema e a resposta dos diferentes algoritmos. Esta resposta foi avaliada para condições transitórias e de regime permanente, considerando diferentes requisitos de consumo na carga, irradiância e temperatura.
Resumo:
No presente trabalho foram desenvolvidos modelos de classificação aplicados à mineração de dados climáticos para a previsão de eventos extremos de precipitação com uma hora de antecedência. Mais especificamente, foram utilizados dados observacionais registrados pela estação meteorológica de superfície localizada no Instituto Politécnico da Universidade do Estado do Rio de Janeiro em Nova Friburgo RJ, durante o período de 2008 a 2012. A partir desses dados foi aplicado o processo de Descoberta de Conhecimento em Banco de Dados (KDD Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós processamento dos dados. Com base no uso de algoritmos de Redes Neurais Artificiais e Árvores de Decisão para a extração de padrões que indicassem um acúmulo de precipitação maior que 10 mm na hora posterior à medição das variáveis climáticas, pôde-se notar que a utilização da observação meteorológica de micro escala para previsões de curto prazo é suscetível a altas taxas de alarmes falsos (falsos positivos). Para contornar este problema, foram utilizados dados históricos de previsões realizadas pelo Modelo Eta com resolução de 15 km, disponibilizados pelo Centro de Previsão de Tempo e Estudos Climáticos do Instituto Nacional de Pesquisas Espaciais CPTEC/INPE. De posse desses dados, foi possível calcular os índices de instabilidade relacionados à formação de situação convectiva severa na região de Nova Friburgo e então armazená-los de maneira estruturada em um banco de dados, realizando a união entre os registros de micro e meso escala. Os resultados demonstraram que a união entre as bases de dados foi de extrema importância para a redução dos índices de falsos positivos, sendo essa uma importante contribuição aos estudos meteorológicos realizados em estações meteorológicas de superfície. Por fim, o modelo com maior precisão foi utilizado para o desenvolvimento de um sistema de alertas em tempo real, que verifica, para a região estudada, a possibilidade de chuva maior que 10 mm na próxima hora.
Resumo:
Os métodos de otimização que adotam condições de otimalidade de primeira e/ou segunda ordem são eficientes e normalmente esses métodos iterativos são desenvolvidos e analisados através da análise matemática do espaço euclidiano n-dimensional, o qual tem caráter local. Esses métodos levam a algoritmos iterativos que são usados para o cálculo de minimizadores globais de uma função não linear, principalmente não-convexas e multimodais, dependendo da posição dos pontos de partida. Método de Otimização Global Topográfico é um algoritmo de agrupamento, o qual é fundamentado nos conceitos elementares da teoria dos grafos, com a finalidade de gerar bons pontos de partida para os métodos de busca local, com base nos pontos distribuídos de modo uniforme no interior da região viável. Este trabalho tem como objetivo a aplicação do método de Otimização Global Topográfica junto com um método robusto e eficaz de direções viáveis por pontos-interiores a problemas de otimização que tem restrições de igualdade e/ou desigualdade lineares e/ou não lineares, que constituem conjuntos viáveis com interiores não vazios. Para cada um destes problemas, é representado também um hiper-retângulo compreendendo cada conjunto viável, onde os pontos amostrais são gerados.
Resumo:
O conhecimento do uso atual e cobertura do solo é imprescindível em qualquer projeto de caracterização e monitoramento ambientais, permitindo demarcar os diferentes usos da terra e vegetação, bem como subsidiar o planejamento e gestão ambientais. O presente trabalho abrange a totalidade do Estado do Rio de Janeiro, compreendido entre os meridianos 410 e 450 de longitude Oeste e os paralelos 200 30? e 230 30? de latitude Sul, estendendo-se por aproximadamente 44.000 km2. Tem como objetivo inventariar e mapear o estado atual da ocupação dos solos, distinguindo e quantificando os principais tipos de uso do solo e de cobertura vegetal, apresentados numa escala generalizada de 1:250.000. Para tal, fez-se um mapeamento preliminar com base nos padrões espectrais das imagens de satélite Landsat ETM7+, cedidas pela EMATER-RJ, utilizando-se de diferentes algoritmos de classificação espectral. Durante a elaboração da versão final do Mapa de Uso Atual e Cobertura Vegetal dos Solos do Estado do Rio de Janeiro, foram viagens de verificação in situ a fim de esclarecer dúvidas e subsidiar ajustes e modificações posteriores. O trabalho de pré-processamento, interpretação e classificação das imagens para a produção e edição final do Mapa de Uso Atual e Cobertura Vegetal realizou-se no período de março de 2002 a fevereiro de 2003, pelas equipes técnicas da CPRM (Serviço Geológico Brasileiro), Divisão de Geoprocessamento - DIGEOP, Departamento de Informações Institucionais (DEINF) e o Laboratório de Geoinformação da Embrapa Solos. Foram identificadas e mapeadas 13 grandes classes de uso e ocupação do solo, algumas delas subdivididas em tipos, assim classificadas e distribuídas: 1 ? Mata Atlântica (Remanescente/Secundária e Ciliar); 2 ? Mangue (Mangue e Mangue Degradado); 3 ? Restinga; 4 - Pecuária (Pastagem Plantada e Campo / Passtagem em Zona Úmida); 5 ? Agricultura; 6 ? Reflorestamento; 7 ? Afloramento de Rocha; 8 ? Solo Exposto; 9 ? Corpo d?Água; 10 ? Salina; 11 ? Extração de Areia / Mineração; 12 ? Praia e Duna; 13 ? Área Urbana.
Resumo:
Modelo de dados e consultas Twing. Evolução dos algoritmos para consultas Twing. Avaliação dos algoritmos apresentados. Novos desafios. Considerações finais. Conclusões.
Resumo:
Especificação de requisitos. Modelagem de classes. Modelo de classes de objetos. Nível geral: diagrama de classes gerais. Modelo dinâmico. modelo funcional. Diagrama de fluxo de dados (DFD). Especificação de processos. Revisão de modelos analisados. Projeto orientado objeto. Organização do sistema. Projeto de objetos. Projeto de algoritmos. Diagrama: entidade-relacionamento. Interface gráfica com o usuário.
Resumo:
Instalação e oferta de ferramentas.Computacionais sting millennium suite. (SMS) através da interface web. Criação de novos algoritmos e programas. Para análise estrutural das proteínas. Oferta de banco de dados públicos. Estabelecimento de um ambiente para.Pesquisa e oferta de serviços na área. De bioinformática. Formação de recursos humanos. Organização de cursos e congresso. Projetos em colaboração.
Resumo:
O objetivo deste trabalho é mostrar os sistemas de apoio à decisão desenvolvidos para solucionar problemas de localização e roteamento, composto pelos novos enfoques de algoritmos de localização e roteamento e sistemas de informação geográfica Spring, Map Objects, Transcard e Arc View.
Resumo:
Com esta publicação, dá-se prosseguimento na implementação de algoritmos úteis para a detecção de bordas, atividade importante também no campo de visão por computador. O objetivo maior dessas implementações é a constituição de uma biblioteca de processamento de imagens em Java, como software livre, sob a General Public License - GNU, conforme publicada pela Free Software Foundation. Todas as implementações encontram-se disponíveis no diretório da Rede Agrolivre (