949 resultados para Algae,


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The abundance and species richness of mollusc and crab assemblages were examined in a subtropical mangrove forest in Moreton Bay, Queensland, Australia, which has been disturbed and damaged by the construction of a wooden boardwalk and a path. Sections of the forest immediately adjacent to the boardwalk and path were compared with reference areas to determine whether changes to the small-scale structural complexity within the forest affected the benthic fauna. The disturbed area was characterised by having 65-80% fewer pneumatophores, significantly fewer species and individuals of molluscs, but significantly more species and individuals of crabs than the reference areas. The abundance of mangrove pneumatophores and the attached epiphytic algae were manipulated at two sites to determine whether observed differences in these features could account for the differences in the assemblage of molluscs in the disturbed area of the forest compared with reference areas. Five experimental treatments were used: undisturbed controls, pneumatophore removals (abundance reduced by ca. 65%), epiphytic algal removals (algae removed from ca. 65% of pneumatophores), pneumatophore disturbance controls and algal disturbance controls. The experimental reduction of the abundance of mangrove pneumatophores and the associated epiphytic algae led to significant declines (by as much as 83%) in the number of molluscs utilising the substratum in the modified plots. There was no significant difference in the abundance of molluscs in the pneumatophore and algal removal plots suggesting any effect was primarily related to removal of the epiphytic algae from the surface of the pneumatophores. The responses by the biota to the changes in the physical environment demonstrate that even relatively small-scale modifications to the physical structure of subtropical mangrove forests can lead to significant effects on the diversity and abundance of macrobenthic organisms in these habitats. Such modifications have the potential to cause cascading effects at higher trophic levels with a deterioration in the value of these habitats as nursery and feeding grounds. Future efforts at conservation of these estuarine environments must focus on the prevention or reduction of modifications to the physical structure and integrity of the system, rather than just on the prevention of loss of entire patches of habitat. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacterial strains isolated from terrestrial and freshwater habitats in Brazil were evaluated for their antimicrobial and siderophore activities. Metabolites of fifty isolates were extracted from the supernatant culture media and cells using ethyl acetate and methanol, respectively. The extracts of 24 isolates showed antimicrobial activity against several pathogenic bacteria and one yeast. These active extracts were characterized by Q-TOF/MS. The cyanobacterial strains Cylindrospermopsis raciborskii 339-T3, Synechococcus elongatus PCC7942, Microcystis aeruginosa NPCD-1, M. panniformis SCP702 and Fischerella sp. CENA19 provided the most active extracts. The 50 cyanobacterial strains were also screened for the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes and microcystin production. Putative fragment genes coding for NRPS adenylation domains and PKS keto-synthase domains were successfully PCR amplified from 92% and 80% of cyanobacterial strains, respectively. The potential therapeutical compounds siderophores were detected in five cyanobacterial isolates. Microcystin production was detected by ELISA test in 26% of the isolates. Further a protease inhibitor substance was detected by LC-MS/MS in the M. aeruginosa NPLJ-4 extract and the presence of aeruginosin and cyanopeptolin was confirmed by PCR amplification using specific primers, and sequenced. This screening study showed that Brazilian cyanobacterial isolates are a rich source of natural products with potential for pharmacological and biotechnological applications. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the production of a hepatotoxic, cyclic heptapeptide, microcystin, by a filamentous branched cyanobacterium belonging to the order Stigonematales, genus Fischerella. The freshwater Fischerella sp. strain CENA161 was isolated from spring water in a small concrete dam in Piracicaba, Sao Paulo State, Brazil, and identified by combining a morphological description with 16S rRNA gene sequencing and phylogenetic analysis. Microcystin (MCYST) analysis performed using an ELISA assay on cultured cells gave positive results. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis detected 33.6 mu g MCYST-LR per gram dry weight of cyanobacterial cells. Microcystin profile revealed by quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS/MS) analysis confirmed the production of MCYST-LR. Furthermore, genomic DNA was analyzed by PCR for sequences similar to the ketosynthase (KS) domain of the type I polyketide synthase gene, which is involved in microcystin biosynthesis. This revealed the presence of a KS nucleotide fragment similar to the mcyD and ndaD genes of the microcystin and nodularin synthetase complexes. Phylogenetic analysis grouped the Fischerella KS sequence together with mcyD sequences of the three known microcystin synthetase operon (Microcystis, Planktothrix and Anabaena) and ndaD of the nodularin synthetase operon, with 100% bootstrap support. Our findings demonstrate that Fischerella sp. CENA161 produces MYCST-LR and for the first time identify a nucleotide sequence putatively involved in microcystin synthesis in this genus. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1Z,3Z)-Butyltelluro-o-4-methoxy-1,3-butadiene 2 was obtained by the hydrotelluration of(Z)-1-methoxy-but-1-en-3-ynes 1. The butadienyllithium 3 obtained by the Te/Li exchange reaction in the (1Z,3Z)-1-butyltelluro-4-methoxy-1.3-butadiene 2 reacted with aldehydes to form the corresponding alcohols 4a-d with total retention of configuration. The alcohols formed undergo hydrolysis, resulting in the alpha,beta,gamma,delta-unsaturated aldehydes of (E,E) configuration, which are precursors of trienes obtained from natural sources. The products of this reaction were employed in the synthesis of methyl-(2E,4E)-decadienoate 7, which is a component of the flavor principles of ripe Bartlett pears. Performing the Wittig reaction of the methyl triphenylphosphorane with the deca-(2E,4E)-dienal 5a, we were able to synthesize the undeca-(1,3E,5E)-triene 6a. This compound is a sex-pheromone component of the marine brown algae Fucus serratus, Dictyopteris plagiograma, and Dictyopteris australis. Performing the Wittig reaction of methyl triphenylphosphorane with the octa-(2E,4E)-dienal 5c, the nona-(1,3E,5E)-triene 6b was synthesized. The compound obtained is a sex-pheromone component of the marine brown alga Sargassum horneri. The octa-( 1,3E,5E)-triene 6c was easily obtained from hepta-(2E,4E)-dienal 5d by the Wittig reaction with methyl triphenylphophorane. This compound is a sex-pheromone component of the marine brown alga Fucus serratus. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As larvae of marine invertebrates age, their response to settlement cues can change. This change can have significant consequences to both the ecology of these organisms, and to their response to antifouling coatings. This study examines how larval age affects the settlement response of larvae to two naturally derived settlement inhibitors, non-polar extracts from the algae Delisea pulchra and Dilophus marginatus, the former of which contains compounds that are in commercial development as antifoulants. Two species of marine invertebrates with non-feeding larvae were investigated: the bryozoans Watersipora subtorquata and Bugula neritina. Larval age strongly affected larval settlement, with older larvae settling at much higher rates than younger larvae. Despite having strong, inhibitory effects on young larvae, the non-polar extracts did not inhibit the settlement of older larvae to the same degree for both species studied. The results show that the effects of ecologically realistic settlement inhibitors are highly dependent on larval age. Given that the age of settling larvae is likely to be variable in the field, such age specific variation in settlement response of larvae may have important consequences for host-epibiont interactions in natural communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prototheca zopfii has been considered one of the most important causes of environmental mastitis in Brazil. These algae are refractory to conventional therapy and cause great damage to the mammary gland. The present study evaluated the in vitro algaecide effect of sodium hypochlorite and iodine based antiseptics on 27 P. zopfii strains isolated from the milk of cattle. Low concentrations of sodium hypochlorite (0.0390625-0.15625%) and iodine (0.15625-0.625%) were effective against the isolates. These antiseptics may be recommended for hygiene routines, pre and postdipping and cauterization of bovine mammary glands infected by P. zopfii. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the hematopoietic response of rats pretreated with CV and exposed to the impact of acute escapable, inescapable or psychogenical stress on responsiveness to an in vivo challenge with Listeria monocytogenes. No consistent changes were observed after exposure to escapable footshock. Conversely, the impact of uncontrollable stress (inescapable and psychogenical) was manifested by an early onset and increased severity and duration of myrelossuppression produced by the infection. Small size CFU-CM colonies and increased numbers of clusters were observed, concurrently to a greater expansion in the more mature population of bone marrow granulocytes. No differences were observed between the responses of both uncontrollable stress regimens. CV prevented the myelossuppression caused by stress/infection due to increased numbers of CFU-GM in the bone marrow. Colonies of cells tightly packed, with a very condensed nucleus; in association with a greater expansion in the more immature population of bone marrow granulocytes were observed. Investigation of the production of colony-stimulating factors revealed increased colony-stimulating activity (CSA) in the serum of normal and infected/stressed rats treated with the algae. CV treatment restored/enhanced the changes produced by stress/infection in total and differential bone marrow and peripheral cells counts. Further studies demonstrated that INF-gamma is significantly reduced, whereas IL-10 is significantly increased after exposure to Uncontrollable stress. Treatment with CV significantly increased INF-gamma levels and diminished the levels of IL-10. Uncontrollable stress reduced the protection afforded by CV to a lethal dose of L. monocytogenes, with survival rates being reduced from (50%) in infected rats to 20% in infected/stressed rats. All together, our results suggest Chlorella treatment as an effective tool for the prophylaxis of post-stress myelossupression, including the detrimental effect of stress on the course and outcome of infections. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectenotoxins (PTXs) are a group of toxins associated with diarrhetic shellfish poisoning (DSP) and isolated from DSP toxin-producing dinoflagellate algae. Consumption of shellfish contaminated with PTXs has been associated with incidences of severe diarrhetic illness resulting in hospitalisation. Concern has been raised for public health following the discovery that these toxins are not only hepatotoxic and can cause diarrhetic effects in mammals, but that they are potently cytotoxic to human cancer cell lines and have been found to be tumour promoters in animals. With advances in knowledge and technology, more PTXs are being identified, but little is known of their toxicology and the potential impact these toxins may have on public health in the long term. Without such information, adequate health-risk assessments for the consumption of shellfish contaminated with PTXs cannot be performed. This review gives a brief introduction to diarrhetic shellfish toxins, details the known toxicology and metabolism of PTXs in animals, and discusses known incidences of PTX poisoning in humans. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef(One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 muM NH4+; 2.3 muM PO4-3) rapidly declined, reaching near-background levels (mean = 0.9 muM NH4+; 0.5 muM PO4-3) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 muM NH4+; 5.1 muM PO4-3 declining to means of 11.3 muM NH4+ and 2.4 muM PO4-3 at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments,were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients, ENCORE has shown that reef organisms and processes investigated ill situ were impacted by elevated nutrients. Impacts mere dependent on dose level, whether nitrogen and/or phosphorus mere elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment mere visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs, inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. (C) 2001 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to determine whether the addition of iron alone or in combination with nitrate affects growth and photosynthesis of the scleractinian coral, Stylophora pistillata, and its symbiotic dinoflagellates. For this purpose, we used three series of two tanks for a 3-week enrichment with iron (Fe), nitrate (N) and nitrate + iron (NFe). Two other tanks were kept as a control (C). Stock solutions of FeCl3 and NaNO3 were diluted to final concentrations of 6 nM Fe and 2 muM N and continuously pumped from batch tanks into the experimental tanks with a peristaltic pump. Results obtained showed that iron addition induced a significant increase in the areal density of zooxanthellae (ANOVA, p = 0.0013; change from 6.3 +/- 0.7 x 10(5) in the control to 8.5 +/- 0.6 x 10(5) with iron). Maximal gross photosynthetic rates normalized per surface area also significantly increased following iron enrichment (ANOVA, p = 0.02; change from 1.23 +/- 0.08 for the control colonies to 1.81 +/- 0.24 mu mol O-2 cm(-2) h(-1) for the iron-enriched colonies). There was, however, no significant difference in the photosynthesis normalized on a per cell basis. Nitrate enrichment alone (2 muM) did not significantly change the zooxanthellae density or the rates of photosynthesis. Nutrient addition (both iron and nitrogen) increased the cell-specific density of the algae (CSD) compared to the control (G-test, p = 0.3 x 10(-9)), with an increase in the number of doublets and triplets. CSD was equal to 1.70 +/- 0.04 in the Fe-enriched colonies, 1.54 +/- 0.12 in the N- and NFe-enriched colonies and 1.37 +/- 0.02 in the control. Growth rates measured after 3 weeks in colonies enriched with Fe, N and NFe were 23%, 34% and 40% lower than those obtained in control colonies (ANOVA. p = 0.011). (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photochemical efficiency of symbiotic dinoflagellates within the tissues of two reef-building corals in response to normal and excess irradiance at wafer temperatures < 30 C were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence techniques, Dark-adapted F-v/F-m showed clear diurnal changes, decreasing to a low at solar noon and increasing in the afternoon. However, F-v/F-m also drifted downwards at night or in prolonged darkness, and increased rapidly during the early morning twilight. This parameter also increased when the oxygen concentration of the wafer holding the corals was increased. Such changes have not been described previously, and most probably reflect state transition's associated with PQ pool reduction via chlororespiration. These unusual characteristics may be a feature of an endosymbiotic environment, reflective of the well-documented night-time tissue hypoxia that occurs in corals. F-v/F-m decreased to 0.25 in response to full sunlight in shade-acclimated (shade) colonies of Stylophora pistillata, which is considerably lower than in light-acclimated (sun) colonies. In sun colonies, the reversible decrease in F-v/F-m was caused by a lowering of F-m and F-o suggesting photoprotection and no lasting damage. The decrease in F-v/F-m, however, was caused by a decrease in F-m and an increase in F-o in shade colonies suggesting photoinactivation and long-term cumulative photoinhibition. Shade colonies rapidly lost their symbiotic algae (bleached) during exposure to full sunlight. This study is consistent with the hypothesis that excess light leads to chronic damage of symbiotic dinoflagellates and their eventual removal from reef-building corals. It is significant that this can occur with high light conditions alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Habitat use, diet and body-size variation are examined in weevils from Heard Island. with specific attention being given to the Ectemnorhinus viridis species complex. E. viridis shows marked altitudinal variation in body size and vestiture, but there are no consistent associations between body size and diet. nor are there consistent among-individual differences in conventional taxonomic characters. Thus, the status of E. viridis as a single, variable species is maintained. This species occurs from sea level to 600 rn and it feeds on vascular plants and bryophytes. Canonopsis sericeus also feeds on bryophytes and vascular plants and occurs over a narrower altitudinal range. Palirhoeus eatoni is restricted to the surpralittoral zone where it feeds on marine algae and lichens. Bothrometopus brei,is and B. gracilipes both feed on cryptogams, with the former species occurring from sea level to 450 m. and the latter from 50 to 550 m above sea level. In all species, males are smaller than females and there is a size cline such that populations from higher elevations are smaller than those at lower altitudes. This cline is the reverse of that found on the Prince Edward Islands which, unlike Heard Island, lie to the north of the Antarctic Polar Frontal Zone. This difference in body-size clines between weevils on the two island groups is ascribed to the shorter growing season on the colder Heard Island. The information presented here supports previous ideas regarding the evolution of the Ectemnorhinus-group of weevils on the South Indian Ocean Province Islands, although it suggests that subsequent tests of these hypotheses would profit from the inclusion of molecular systematic work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The green macroalgal species Caulerpa taxifolia is indigenous to tropical/subtropical Australia, ranging as far south as 28degrees and 29degrees 15' S on the Australian mainland east and west coasts, respectively. The origin of disjunct populations of the species, discovered in 2000 on the Australian mainland east coast at localities to 35degrees S remains unknown, variously attributed to introduced exotic strains or range extensions from other eastern Australian populations. Some naturally occurring Australian populations of C. taxifolia are similar to Mediterranean C. taxifolia. In Australia, large broad forms of the species, which have been known in the region since 1860, grow luxuriantly in sheltered seagrass meadows, with some of these populations tolerating minimum surface seawater temperatures in winter of 12.5 to 14.5degreesC. Accordingly, the contention that the Mediterranean has been invaded by a genetically-modified, large, cold-adapted strain of C. taxifolia may be incorrect. It is crucial that genetic markers (DNA fingerprinting, microsatellites) sensitive at the population level are used to accurately determine the genetic relatedness of C. taxifolia populations.