975 resultados para Agoniste inverse
Resumo:
De nouveaux modèles cellulaires in vitro par transfert de milieu et par coculture ont été mis au point afin d’évaluer la capacité des HDL à éliminer l’excès de cholestérol des tissus périphériques et de le transporter vers le foie afin d’être excrété par le foie, un processus nommé le transport inverse du cholestérol (TIC). Le système cellulaire par transfert in vitro où des macrophages J774 sont gorgés de LDL acétylées et marqués au 3H-cholestérol a été préalablement établi afin de mesurer par scintillation l’efflux de cholestérol marqué vers le milieu de culture contenant des accepteurs de cholestérol. Ce milieu conditionné est transféré sur des cellules HepG2 afin d’étudier l’influx du cholestérol marqué. Ce dernier nous permet d’observer un transport de cholestérol de 25 % hors des J774 et un transport de 39 000 cpm dans les HepG2 en utilisant un milieu contenant 2 % de sérums humains mis en commun. Une stimulation des cellules J774 par l’AMPc augmente l’efflux et l’influx d’environ 45 %. Des tests de preuve de concept ont été effectués sur le système cellulaire par co-culture qui utilise des chambres de Boyden où les J774 sont localisées au fond d’un puits et les HepG2 dans un insert, et où le milieu est partagé entre les deux types cellulaires. On a déterminé qu’une confluence densité de 60 000 cellules/cm2 sur un insert constitué d’une membrane de polyester avec des pores de 3,0 μm, sans autre revêtement, permet d’observer un influx spécifique au sérum d’environ 6 000 cpm associés aux cellules HepG2, où 50 % des comptes radioactifs sont dans les cellules et l’autre moitié présente à la surface cellulaire.
A new analysis of hydrographic data in the Atlantic and its application to an inverse modeling study
Resumo:
The evaluation of the mesh opening stiffness of fishing nets is an important issue in assessing the selectivity of trawls. It appeared that a larger bending rigidity of twines decreases the mesh opening and could reduce the escapement of fish. Nevertheless, netting structure is complex. A netting is made up of braided twines made of polyethylene or polyamide. These twines are tied with non-symmetrical knots. Thus, these assemblies develop contact-friction interactions. Moreover, the netting can be subject to large deformation. In this study, we investigate the responses of netting samples to different types of solicitations. Samples are loaded and unloaded with creep and relaxation stages, with different boundary conditions. Then, two models have been developed: an analytical model and a finite element model. The last one was used to assess, with an inverse identification algorithm, the bending stiffness of twines. In this paper, experimental results and a model for netting structures made up of braided twines are presented. During dry forming of a composite, for example, the matrix is not present or not active, and relative sliding can occur between constitutive fibres. So an accurate modelling of the mechanical behaviour of fibrous material is necessary. This study offers experimental data which could permit to improve current models of contact-friction interactions [4], to validate models for large deformation analysis of fibrous materials [1] on a new experimental case, then to improve the evaluation of the mesh opening stiffness of a fishing net
Resumo:
Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury) -- The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement -- The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton -- This approximation is rough since their kinematic structures differ -- Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup -- Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains -- EIKPE has been tested with single DOFmovements of the wrist and elbow joints -- This paper presents the assessment of EIKPEwith elbow-shoulder compoundmovements (i.e., object prehension) -- Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage) -- The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compoundmovement execution, especially for the shoulder joint angles -- This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types --
Resumo:
Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.
Resumo:
Las lesiones musculares del muslo tienen una gran incidencia en el fútbol. El objetivo del estudio ha sido desarrollar un nuevo procedimiento para evaluar el efecto de las lesiones de isquiotibiales en los golpeos con el pie s en el fútbol utilizando los principios de la dinámica inversa. El trabajo se ha centrado en la evaluación de la diferencia entre sujetos que habían sufrido la lesión en los últimos 5 años y los que no. Se analizaron 17 jugadores de fútbol profesionales realizando cinco tiros con el empeine y cinco con el interior del pie. Los movimientos se registraron mediante una plataforma de fuerza y un sistema de captura de movimiento Vicon funcionando a 500Hz. Los participantes también tomaron parte en una prueba de isocinético en la que se midió el torque isocinético en 60 º/s y 120 º/s. Se observaron diferencias significativas en los parámetros cinemáticos y cinéticos entre los dos grupos (lesionados y no lesionados) en la fase posterior del golpeo y en el instante de máxima flexión de cadera. No se encontraron diferencias significativas entre los dos grupos en la prueba isocinética tradicional. Estos resultados indican que el procedimiento empleado probablemente podría ser muy útil en la evaluación del efecto de las lesiones de isquiotibiales en el fútbol.
Resumo:
Experimental geophysical fluid dynamics often examines regimes of fluid flow infeasible for computer simulations. Velocimetry of zonal flows present in these regimes brings many challenges when the fluid is opaque and vigorously rotating; spherical Couette flows with molten metals are one such example. The fine structure of the acoustic spectrum can be related to the fluid’s velocity field, and inverse spectral methods can be used to predict and, with sufficient acoustic data, mathematically reconstruct the velocity field. The methods are to some extent inherited from helioseismology. This work develops a Finite Element Method suitable to matching the geometries of experimental setups, as well as modelling the acoustics based on that geometry and zonal flows therein. As an application, this work uses the 60-cm setup Dynamo 3.5 at the University of Maryland Nonlinear Dynamics Laboratory. Additionally, results obtained using a small acoustic data set from recent experiments in air are provided.
Resumo:
Protective relaying comprehends several procedures and techniques focused on maintaining the power system working safely during and after undesired and abnormal network conditions, mostly caused by faulty events. Overcurrent relay is one of the oldest protective relays, its operation principle is straightforward: when the measured current is greater than a specified magnitude the protection trips; less variables are required from the system in comparison with other protections, causing the overcurrent relay to be the simplest and also the most difficult protection to coordinate; its simplicity is reflected in low implementation, operation, and maintenance cost. The counterpart consists in the increased tripping times offered by this kind of relays mostly before faults located far from their location; this problem can be particularly accentuated when standardized inverse-time curves are used or when only maximum faults are considered to carry out relay coordination. These limitations have caused overcurrent relay to be slowly relegated and replaced by more sophisticated protection principles, it is still widely applied in subtransmission, distribution, and industrial systems. In this work, the use of non standardized inverse-time curves, the model and implementation of optimization algorithms capable to carry out the coordination process, the use of different levels of short circuit currents, and the inclusion of distance relays to replace insensitive overcurrent ones are proposed methodologies focused on the overcurrent relay performance improvement. These techniques may transform the typical overcurrent relay into a more sophisticated one without changing its fundamental principles and advantages. Consequently a more secure and still economical alternative can be obtained, increasing its implementation area
Resumo:
Direct sampling methods are increasingly being used to solve the inverse medium scattering problem to estimate the shape of the scattering object. A simple direct method using one incident wave and multiple measurements was proposed by Ito, Jin and Zou. In this report, we performed some analytic and numerical studies of the direct sampling method. The method was found to be effective in general. However, there are a few exceptions exposed in the investigation. Analytic solutions in different situations were studied to verify the viability of the method while numerical tests were used to validate the effectiveness of the method.
Resumo:
Many production systems have acquisition and merge operations to increase productivity. This paper proposes a novel method to anticipate whether a merger in a market is generating a major or a minor consolidation, using InvDEA model. A merger between two or more decision making units (DMUs) producing a single merged DMU that affects the efficiency frontier, defined by the pre-consolidation market conditions, is called a major consolidation. The corresponding alternative case is called a minor consolidation. A necessary and sufficient condition to distinguish the two types of consolidations is proven and two numerical illustrations in banking and supply chain management are discussed. The crucial importance of anticipating the magnitude of a consolidation in a market is outlined.
Resumo:
The topic of the Ph.D project focuses on the modelling of the soil-water dynamics inside an instrumented embankment section along Secchia River (Cavezzo (MO)) in the period from 2017 to 2018 and the quantification of the performance of the direct and indirect simulations . The commercial code Hydrus2D by Pc-Progress has been chosen to run the direct simulations. Different soil-hydraulic models have been adopted and compared. The parameters of the different hydraulic models are calibrated using a local optimization method based on the Levenberg - Marquardt algorithm implemented in the Hydrus package. The calibration program is carried out using different types of dataset of observation points, different weighting distributions, different combinations of optimized parameters and different initial sets of parameters. The final goal is an in-depth study of the potentialities and limits of the inverse analysis when applied to a complex geotechnical problem as the case study. The second part of the research focuses on the effects of plant roots and soil-vegetation-atmosphere interaction on the spatial and temporal distribution of pore water pressure in soil. The investigated soil belongs to the West Charlestown Bypass embankment, Newcastle, Australia, that showed in the past years shallow instabilities and the use of long stem planting is intended to stabilize the slope. The chosen plant species is the Malaleuca Styphelioides, native of eastern Australia. The research activity included the design and realization of a specific large scale apparatus for laboratory experiments. Local suction measurements at certain intervals of depth and radial distances from the root bulb are recorded within the vegetated soil mass under controlled boundary conditions. The experiments are then reproduced numerically using the commercial code Hydrus 2D. Laboratory data are used to calibrate the RWU parameters and the parameters of the hydraulic model.
Resumo:
Inverse problems are at the core of many challenging applications. Variational and learning models provide estimated solutions of inverse problems as the outcome of specific reconstruction maps. In the variational approach, the result of the reconstruction map is the solution of a regularized minimization problem encoding information on the acquisition process and prior knowledge on the solution. In the learning approach, the reconstruction map is a parametric function whose parameters are identified by solving a minimization problem depending on a large set of data. In this thesis, we go beyond this apparent dichotomy between variational and learning models and we show they can be harmoniously merged in unified hybrid frameworks preserving their main advantages. We develop several highly efficient methods based on both these model-driven and data-driven strategies, for which we provide a detailed convergence analysis. The arising algorithms are applied to solve inverse problems involving images and time series. For each task, we show the proposed schemes improve the performances of many other existing methods in terms of both computational burden and quality of the solution. In the first part, we focus on gradient-based regularized variational models which are shown to be effective for segmentation purposes and thermal and medical image enhancement. We consider gradient sparsity-promoting regularized models for which we develop different strategies to estimate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play convergent scheme considering a deep learning based denoiser trained on the gradient domain. In the second part, we address the tasks of natural image deblurring, image and video super resolution microscopy and positioning time series prediction, through deep learning based methods. We boost the performances of supervised, such as trained convolutional and recurrent networks, and unsupervised deep learning strategies, such as Deep Image Prior, by penalizing the losses with handcrafted regularization terms.
Resumo:
Imaging technologies are widely used in application fields such as natural sciences, engineering, medicine, and life sciences. A broad class of imaging problems reduces to solve ill-posed inverse problems (IPs). Traditional strategies to solve these ill-posed IPs rely on variational regularization methods, which are based on minimization of suitable energies, and make use of knowledge about the image formation model (forward operator) and prior knowledge on the solution, but lack in incorporating knowledge directly from data. On the other hand, the more recent learned approaches can easily learn the intricate statistics of images depending on a large set of data, but do not have a systematic method for incorporating prior knowledge about the image formation model. The main purpose of this thesis is to discuss data-driven image reconstruction methods which combine the benefits of these two different reconstruction strategies for the solution of highly nonlinear ill-posed inverse problems. Mathematical formulation and numerical approaches for image IPs, including linear as well as strongly nonlinear problems are described. More specifically we address the Electrical impedance Tomography (EIT) reconstruction problem by unrolling the regularized Gauss-Newton method and integrating the regularization learned by a data-adaptive neural network. Furthermore we investigate the solution of non-linear ill-posed IPs introducing a deep-PnP framework that integrates the graph convolutional denoiser into the proximal Gauss-Newton method with a practical application to the EIT, a recently introduced promising imaging technique. Efficient algorithms are then applied to the solution of the limited electrods problem in EIT, combining compressive sensing techniques and deep learning strategies. Finally, a transformer-based neural network architecture is adapted to restore the noisy solution of the Computed Tomography problem recovered using the filtered back-projection method.
Resumo:
Il problema inverso di Galois classico consiste nel chiedersi se, dato un gruppo finito G, esista una estensione di Galois del campo dei numeri razionali che abbia come gruppo di Galois il gruppo G. Una volta verificata l'esistenza di una tale estensione poi, si cercano polinomi a coefficienti razionali il cui gruppo di Galois sia G stesso. Noto dall'inizio del diciannovesimo secolo, il problema è tuttora in generale irrisolto, nonostante nel corso degli anni siano stati fatti notevoli progressi. In questa tesi il problema viene affrontato e risolto in alcuni casi particolari: viene mostrata la realizzazione dei gruppi ciclici, dei gruppi abeliani e dei gruppi simmetrici come gruppi di Galois sul campo dei razionali, e vengono dati alcuni esempi di polinomi con tali gruppi di Galois.