908 resultados para Aerodynamic Forces.
Resumo:
We investigate the composition and the equation of state of the kaon condensed phase in neutrino-free and neutrino-trapped star matter within the framework of the Brueckner-Hartree-Fock approach with three-body forces. We find that neutrino trapping shifts the onset density of kaon condensation to a larger baryon density, and reduces considerably the kaon abundance. As a consequence, when kaons are allowed, the equation of state of neutrino-trapped star matter becomes stiffer than the one of neutrino free matter. The effects of different three-body forces are compared and discussed. Neutrino trapping turns out to weaken the role played by the symmetry energy in determining the composition of stellar matter, and thus reduces the difference between the results obtained by using different three-body forces.
Resumo:
Within the Brueckner-Hartree-Fock framework, the equation of state and the properties of newborn neutron stars are investigated by adopting a realistic nucleon-nucleon interaction AV(18) supplemented with a microscopic three-body force or a phenomenological three-body force. The maximum mass of newborn neutron star and the proton fraction in the newborn beta-stable neutron-star matter are calculated. The neutrino-trapping and the three-body force effects are discussed, and the interplay between the effects of the trapped neutrino and the three-body force are especially explored. It is shown that neutrino trapping considerably affects the proton abundance and the equation of state of the newborn neutron star in both cases with and without the three-body forces. The effect of neutrino trapping remarkably enhances the proton abundance, and the contribution of the three-body force makes the equation of state of the newborn neutron star much stiffer at high densities and consequently increases the proton abundance strongly. The trapped neutrinos significantly reduce the influence of the three-body force on the proton abundance in newborn neutron stars.
Resumo:
National Natural Science Foundation of China [40201005]; Knowledge Innovation Project of Chinese Academy of Sciences [KZCX3-SW-321, KZCX2-314, KZCX1-SW-321-4]
Resumo:
Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km x 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.
Resumo:
China has witnessed fast urban growth in the recent decade. This study analyzes spatio-temporal characteristics of urban expansion in China using satellite images and regionalization methods. Landsat TM images at three time periods, 1990/1991, 1995/1996, and 1999/2000, are interpreted to get 1:100000 vector land use datasets. The study calculates the urban land percentage and urban land expansion index of every 1 km(2) cell throughout China. The study divides China into 27 urban regions to conceive dynamic patterns of urban land changes. Urban development was achieving momentum in the western region, expanding more noticeably than in the previous five years, and seeing an increased growth percentage. Land use dynamic changes reflect the strong impacts of economic growth environments and macro-urban development policies. The paper helps to distinguish the influences of newly market-oriented forces from traditional administrative controls on China's urban expansion. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Along with its economic reform, China has experienced a rapid urbanization. This study mapped urban land expansion in China using high-resolution Landsat Thematic Mapper and Enhanced Thematic Mapper data of 1989/1990, 1995/1996 and 1999/2000 and analyzed its expansion modes and the driving forces underlying this process during 1990-2000. Our results show that China's urban land increased by 817 thousand hectares, of which 80.8% occurred during 1990-1995 and 19.2% during 1995-2000. It was also found that China's urban expansion had high spatial and temporal differences, such as four expansion modes, concentric, leapfrog, linear and multi-nuclei, and their combinations coexisted and expanded urban land area in the second 5 y was much less than that of the first 5 y. Case studies of the 13 mega cities showed that urban expansion had been largely driven by demographic change, economic growth, and changes in land use policies and regulations.
Resumo:
Land-use change is an important aspect of global environment change. It is, in a sense, the direct result of human activities influencing our physical environment. Supported by the dynamic serving system of national resources, including both the environment database and GIS technology, this paper analyzed the land-use change in northeastern China in the past ten years (1990 - 2000). It divides northeastern China into five land-use zones based on the dynamic degree (DD) of land-use: woodland/grassland - arable land conversion zone, dry land - paddy field conversion zone, urban expansion zone, interlocked zone of farming and pasturing, and reclamation and abandoned zone. In the past ten years, land-use change of northeastern China can be generalized as follows: increase of cropland area was obvious, paddy field and dry land increased by 74. 9 and 276. 0 thousand ha respectively; urban area expanded rapidly, area of town and rural residence increased by 76. 8 thousand ha; area of forest and grassland decreased sharply with the amount of 1399. 0 and 1521. 3 thousand ha respectively; area of water body and unused land increased by 148. 4 and 513. 9 thousand ha respectively. Besides a comprehensive analysis of the spatial patterns of land use, this paper also discusses the driving forces in each land-use dynamic zones. The study shows that some key biophysical factors affect conspicuously the conversion of different land- use types. In this paper, the relationships between land- use conversion and DEM, accnmlated temperature(>= 10 degrees C) and precipitation were analysed and represented. We conclude that the land- use changes in northeast China resulted from the change of macro social and economic factors and local physical elements. Rapid population growth and management changes, in some sense, can explain the shaping of woodland/grassland - cropland conversion zone. The conversion from dry land to paddy field in the dry land - paddy field conversion zone, apart from the physical elements change promoting the expansion of paddy field, results from two reasons: one is that the implementation of market-economy in China has given farmers the right to decide what they plant and how they plant their crops, the other factor is originated partially from the change of dietary habit with the social and economic development. The conversion from paddy field to dry land is caused primarily by the shortfall of irrigation water, which in turn is caused by poor water allocation managed by local governments. The shaping of the reclamation and abandoned zone is partially due to the lack of environment protection consciousness among pioneer settlers. The reason for the conversion from grassland to cropland is the relatively higher profits of fanning than that of pasturing in the interlocked zone of farming and pasturing. In northeastern China, the rapid expansion of built-up areas results from two factors: the first is its small number of towns; the second comes from the huge potential for expansion of existing towns and cities. It is noticeable that urban expansion in the northeastern China is characterized by gentle topographic relief and low population density. Physiognomy, transportation and economy exert great influences on the urban expansion.
Resumo:
The immobilization of surface-derivatized gold nanoparticles onto methyl-terminated self-assembled monolayers (SAMs) on gold surface was achieved by the cooperation of hydrophobic and electrophoretic forces. Electrochemical and scanning probe microscopy techniques were utilized to explore the influence of the SAM's structure and properties of the nanoparticle/SAM/gold system. SAMs prepared from 1-decanethiol (DT) and 2-mercapto-3-n-octylthiophene (MOT) were used as hydrophobic substrates. The DT SAM is a closely packed and organized monolayer, which can effectively block the underlying gold and inhibit a variety of solution species including organic and inorganic molecules from penetrating, whereas the MOT monolayer is poorly packed or disorganized (because of a large difference in dimension between the thiophene head and the alkylchain tail) and permeable to many organic probes in aqueous solution but not to inorganic probes. Thus, the MOT monolayer provides a more energetically favorable hydrophobic surface for the penetration and adsorption of organic species than the DT monolayer.
Resumo:
Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave-wave and wave-current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan-Pierson-Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
By using high-resolution laser grain size instrument Mastersizer 2000, the grain size distribution of windblown depositions (loess and sandy dunes), aqueous sediments (lake, river, riverside and foreshore sand), weathering crust, sloping materials and other fine-grain sediments are systemically measured. The multimodal characteristics of grain size distribution of these sediments are carefully studied. The standard patterns and their grain size characteristics of various sediments are systemically summarized. The discrepancies of multimodal distribution among windblown depositions, aqueous sediments and other sediments are concluded and the physical mechanisms of grain size multimodal distribution of various sediments are also discussed in this paper. The major conclusions are followed: 1. The multimodal characteristic of grain size distribution is a common feature in all sediments and results from properties of transportation medium, dynamic intensity, transportation manner and other factors. 2. The windblown depositions are controlled by aerodynamic forcing, resulting in that the median size of the predominant mode gradually decreases form sandy dunes to loess. Similarly, the aqueous sediments are impacted by dynamic forces of water currents and the median grain size of the predominant mode decreases gradually from river to lake sediments. Because the kinetic viscidity of air is lower than of water, the grain size of modes of windblown depositions is usually finer than that of corresponding modes of aqueous sediments. Typical characteristics of sediments grain size distribution of various sediments have been summarized in the paper: (1) Suspended particles which diameters are less than 75μm are dominant in loess and dust. There are three modes in loess’ grain size distribution: fine, median and coarse (the median size is <1μm、1-10μm、10-75μm, respectively). The coarse mode which percentage is larger than that of others is controlled by source distance and aerodynamic intensity of dust source areas. Some samples also have a saltation mode which median size is about 300-500μm. Our analysis demonstrates that the interaction of wind, atmospheric turbulence, and dust grain gravity along the dust transportation path results in a multimodal grain size distribution for suspended dust. Changes in the median sizes of the coarse and medium modes are related to variation in aerodynamic forcing (lift force related to vertical wind and turbulence) during dust entrainment in the source area and turbulence intensity in the depositional area. (2) There is a predominant coarse saltation mode in grain size distribution of sandy dunes, which median size is about 100-300μm and the content is larger than that of other modes. The grain size distribution curve is near axis symmetric as a standard logarithm normal function. There are some suspended particles in some samples of sandy dunes, which distribution of the fine part is similar to that of loess. Comparing with sandy samples of river sediments, the sorting property of sandy dunes is better than of river samples although both they are the saltation mode. Thus, the sorting property is a criterion to distinguish dune sands and river sands. (3) There are 5~6 modes (median size are <1μm, 1-10μm, 10-70μm, 70-150μm, 150-400μm, >400μm respectively) in grain size distribution of lacustrine sediments. The former 4 modes are suspensive and others are saltated. Lacustrine sediments can be divided into three types: lake shore facies, transitional facies and central lake facies. The grain size distributions of the three facies are distinctly different and, at the same time, the transition among three modes is also clear. In all these modes, the third mode is a criteria to identify the windblown deposition in the watershed. In lake shore sediments, suspended particles are dominant, a saltation mode sometimes occurs and the fourth mode is the most important mode. In the transitional facies, the percentage of the fourth mode decreases and that of the second mode increases from lake shore to central lake. In the central lake facies, the second mode is dominant. A higher content of the second mode indicates its position more close to the central lake. (4) The grain size distribution of river sediments is the most complex. It consist of suspension, saltation and rolling modes. In most situations, the percentage of the saltation mode is larger than that of other modes. The percentage of suspension modes of river sediments is more than of sandy dunes. The grain size distribution of river sediments indicates dynamic strength of river currents. If the fourth mode is dominant, the dynamic forcing of river is weaker, such as in river floodplain. If the five or sixth mode is dominant, the water dynamic forcing of rivers is strong. (5) Sediments can be changed by later forcing in different degree to form some complicated deposition types. In the paper, the grain size distribution of aqueous sediments of windblown deposition, windblown sediments of aqueous deposition, weathering crust and slope materials are discussed and analyzed. 3. The grain size distribution characteristics of different sediments are concluded: (1) Modal difference: Usually there are suspended and saltation modes in the windblown deposition. The third mode is dominant in loess dust and the fifth mode is predominant in sandy dunes. There are suspended, saltation and rolling particles in aqueous sediments. In lacustrine sediments, the second and fourth mode are predominant for central lake facies or lake shore facies, respectively. In river sediments, the fourth, or fifth, or sixth mode is predominant. Suspended modes: the grain size of suspended particles of windblown depositions usually is less than 75μm. The content of suspended particles is lower or none in sandy dunes. However, suspended particles of aqueous sediments may reach 150μm. Difference in grain size of suspended modes represents difference between transitional mediums and the strength of dynamic forcing. Saltation modes: the median size of saltation mode of sandy dunes fluctuates less than that of river sediments. (2) Loess dust and lacustrine sediment: Their suspended particles are clearly different. There is an obvious pit between the second and the third modes in grain size distribution of lacustrine sediments. The phenomenon doesn’t occur in loess dust. In lacustrine sediments, the second mode can be a dominant mode, such as central lake facies, and contents of the second and the third modes change reversely. However, the percentage of the third mode is always the highest in loess dust. (3) Dune Sand and fluvial sand: In these two depositions, the saltation particles are dominant and the median sizes of their saltation modes overlay in distribution range. The fifth mode of dune sand fluctuates is sorted better than that of fluvial sand. (4) Lacustrine and fluvial sediments: In lacustrine sediments, there are 5-6 modes and suspended particles can be predominant. The second mode is dominant in central lake facies and the third mode is dominant in lake shore facies. Saltation or roll modes occurred in central lake facies may indicate strong precipitation events. In fluvial sediments, saltation particles (or rolling particles) usually dominant. 4. A estimation model of lake depth is firstly established by using contents of the second, the third and the fourth modes. 5. The paleoenvironmental history of the eastern part of SongLiao basin is also discussed by analyzing the grain size distribution of Yushu loess-like sediments in Jilin. It was found that there is a tectonic movement before 40ka B.P. in SongLiao basin. After the movement, loess dust deposited in Yushu area as keerqin desert developed. In recent 2000 years, the climate became drier and more deserts activated in the eastern part of Song-Liao basin.
Resumo:
Meng, Q., & Lee, M. (2005). Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics. Wermter, S., Palm, G., & Elshaw, M. (Eds.), In: Biomimetic Neural Learning for Intelligent Robots: Intelligent Systems, Cognitive Robotics, and Neuroscience. (pp. 315-332). (Lecture Notes in Computer Science). Springer Berlin Heidelberg.
Resumo:
Q. Meng and M. H. Lee, Novelty and Habituation: the Driving Forces in Early Stage Learning for Developmental Robotics, AI-Workshop on NeuroBotics, University of Ulm, Germany. September 2004.
Resumo:
Plakhov, A.Y.; Torres, D., (2005) 'Newton's aerodynamic problem in media of chaotically moving particles', Sbornik: Mathematics 196(6) pp.885-933 RAE2008