983 resultados para Adenomatous Polyposis Coli


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the efficacy of ozone inactivation of B. subtilis spores and E. coli in cassava starch was evaluated. Cassava starch with 18 and 30% moisture content was processed with ozone at concentrations of 40-118 ppm and exposure times of 15-120 minutes. The processing at 113 ppm/120 minutes (maximum exposure level to ozone evaluated) at 18% of moisture content did not cause significant reduction of B. subtilis spores and caused the reduction of only 2 decimal of E. coli. On the other hand, when the ozonation process was carried out for 120 minutes at 30% of moisture content, 3.6 decimal reduction of B. subtilis was achieved at 40 ppm of ozone and total B. subtilis load reduction (>5 log cycles) was observed at 118 ppm of ozone. Similarly, total E. coli load reduction (>7 log cycles) was achieved at 40 ppm of ozone exposure for 60 minutes. Therefore, the results indicate that the ozone efficacy against microorganisms in cassava starch was mainly dependent on the sample moisture content and to ozone concentration and exposure time. Moreover, it was observed that ozone is a promising technology to reduce microbial counts in dried food.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Milkborne transmission of Shiga toxin- producing Escherichia coli (STEC) has raised considerable concern due to recent outbreaks worldwide and poses a threat to public health. The aim of this study was to develop a sensitive and specific multiplex PCR assay to detect the presence of STEC in bovine raw milk. To identify E. coli (ATCC 25922) contamination, the gene uspA was used, and PCR sensitivity and specificity were accessed by testing diluted samples ranging from 2 to 2.0 Ã 10(6) CFU/mL. To detect STEC, the stx1 and stx2 genes were selected as targets. After reaction standardization, the multiplex assay was tested in raw milk collected from 101 cows on dairy farms. PCR assay for E. coli detection had a specificity of 100% and sensitivity of 79% (P<0.0001), with a lower detection limit of 2 CFU/mL. Multiplex PCR assay had 100% sensitivity for E. coli positive raw milk samples, and 31.1% were contaminated with STEC, 28.3% of stx2, and 1.9% of stx1. The multiplex PCR assay described in the present study can be employed to identify and screen E. coli harboring stx1 and stx2 genes in raw milk on dairy farms and in industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains (isolated by cattle&#8217;s faeces and a reference strain, EDL933), were inoculated into pasteurized milk (102 and 103 cells.mL&#8211;1) to prepare the Minas frescal cheese. As control was used uninfected milk. Physicochemical and microbiological analyses were performed to milk and elaborated cheese. The O157:H7 strains were quantified in the stages of cheese processing and during 0, 2, 4, 5, 7, 10 and 15 storage days at 8 &#176;C onto Sorbitol MacConkey Agar supplemented with potassium tellurite and cefixime (CT-SMAC). O157:H7 was not present in the pasteurised milk prior to the artificial inoculation. At the end of the processing the cheese had 10 to 100 times more STEC O157:H7 than the initial inoculum. During the storage, the Minas frescal cheese exhibited the largest population increase on the 4th and 5th day when inoculated with 102 and 103 cells.mL&#8211;1, respectively. Additionally, viable cells were found up to the 10th and 15th day, according to the amount of initial inoculum. This number of cells is able to cause infection in humans, and therefore, Minas frescal cheese, even when stored under refrigeration, is a potential vehicle of disease caused by STEC O157:H7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalase is the enzyme which decomposes hydrogen peroxide to water and oxygen. Escherichia coli contains two catalases. Hydroperoxidase I (HPI) is a bifunctional catalase-peroxidase. Hydroperoxidase II (HPII) is only catalytically active toward H202. Expression of the genes encoding these proteins is controlled by different regimes. HPJI is thought to be a hexamer, having one heme d cis group per enzymatic subunit. HPII wild type protein and heme containing mutant proteins were obtained from the laboratory of P. Loewen (Univ. of Manitoba). Mutants constructed by oligonucleotidedirected mutagenesis were targeted for replacement of either the His128 residue or the Asn201 residue in the vicinity of the HPII heme crevice. His128 is the residue thought to be analogous to the His74 distal axial ligand of the heme in the bovine liver enzyme, and Asn201 is believed to be a residue critical to the function of the enzyme because of its role in orienting and interacting with the substrate molecule. Investigation of the nature of the hemes via absorption spectroscopy of the unmodified catalase proteins and their derived pyridine hemochromes showed that while the bovine and Saccharomyces cerevisiae catalase enzymes are protoheme-containing, the HPII wild type protein contains heme d, and the mutant proteins contain either solely protoheme, or heme d-protoheme mixtures. Cyanide binding studies supported this, as ligand binding was monophasic for the bovine, Saccharomyces cerevisiae, and wild type HPII enzymes, but biphasic for several of the HPII mutant proteins. Several mammalian catalases, and at least two prokaryotic catalases, are known to be NADPH binding. The function of this cofactor appears to be the prevention of inactivation of the enzyme, which occurs via formation of the inactive secondary catalase peroxide compound (compound II). No physiologically plausible scheme has yet been proposed for the NADPH mediation of catalase activity. This study has shown, via fluorescence and affinity chromatography techniques, that NADPH binds to the T (Typical) and A (Atypical) catalases of Saccharomyces cerevisiae, and that wild type HPII apparently does not bind NADPH. This study has also shown that NADPH is unlike any other hydrogen donor to catalase, and addresses its features as a unique donor by proposing a mechanism whereby NADPH is oxidized and catalase is protected from inactivation via the formation of protein radical species. Migration of this radical to a position close to the NADPH is also proposed as an adjunct hypothesis, based on similar electron migrations that are known to occur within metmyoglobin and cytochrome c peroxidase when reacted with H202. Validation of these hypotheses may be obtained in appropriate future experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Microbiología Médica) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Microbiología) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Biología Molecular e Ingeniería Genética) U.A.N.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Microbiología Médica) U.A.N.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis de María Alicia Suárez Semour (Maestro en Ciencias con especialidad en Microbiología Médica) U.A.N.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias con Acentuación en Microbiología) UANL, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con orientación en Farmacia) UANL, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctorado en Ciencias con Especialidad en Inmunología) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Des variations importantes du surenroulement de lâADN peuvent être générées durant la phase dâélongation de la transcription selon le modèle du « twin supercoiled domain ». Selon ce modèle, le déplacement du complexe de transcription génère du surenroulement positif à lâavant, et du surenroulement négatif à lâarrière de lâARN polymérase. Le rôle essentiel de la topoisomérase I chez Escherichia coli est de prévenir lâaccumulation de ce surenroulement négatif générée durant la transcription. En absence de topoisomérase I, lâaccumulation de ce surenroulement négatif favorise la formation de R-loops qui ont pour conséquence dâinhiber la croissance bactérienne. Les R-loops sont des hybrides ARN-ADN qui se forment entre lâARN nouvellement synthétisé et le simple brin dâADN complémentaire. Dans les cellules déficientes en topoisomérase I, des mutations compensatoires sâaccumulent dans les gènes qui codent pour la gyrase, réduisant le niveau de surenroulement négatif du chromosome et favorisant la croissance. Une des ces mutations est une gyrase thermosensible qui sâexprime à 37 °C. La RNase HI, une enzyme qui dégrade la partie ARN dâun R-loop, peut aussi restaurer la croissance en absence de topoisomérase I lorsquâelle est produite en très grande quantité par rapport à sa concentration physiologique. En présence de topoisomérase I, des R-loops peuvent aussi se former lorsque la RNase HI est inactive. Dans ces souches mutantes, les R-loops induisent la réponse SOS et la réplication constitutive de lâADN (cSDR). Dans notre étude, nous montrons comment les R-loops formés en absence de topoisomérase I ou RNase HI peuvent affecter négativement la croissance des cellules. Lorsque la topoisomérase I est inactivée, lâaccumulation dâhypersurenroulement négatif conduit à la formation de nombreux R-loops, ce qui déclenche la dégradation de lâARN synthétisé. Issus de la dégradation de lâARNm de pleine longueur, des ARNm incomplets et traductibles sâaccumulent et causent lâinhibition de la synthèse protéique et de la croissance. Le processus par lequel lâARN est dégradé nâest pas encore complètement élucidé, mais nos résultats soutiennent fortement que la RNase HI présente en concentration physiologique est responsable de ce phénotype. Chose importante, la RNase E qui est lâendoribonuclease majeure de la cellule nâest pas impliquée dans ce processus, et la dégradation de lâARN survient avant son action. Nous montrons aussi quâune corrélation parfaite existe entre la concentration de RNase HI, lâaccumulation dâhypersurenroulement négatif et lâinhibition de la croissance bactérienne. Lorsque la RNase HI est en excès, lâaccumulation de surenroulement négatif est inhibée et la croissance nâest pas affectée. Lâinverse se produit Lorsque la RNase HI est en concentration physiologique. En limitant lâaccumulation dâhypersurenroulement négatif, la surproduction de la RNase HI prévient alors la dégradation de lâARN et permet la croissance. Quand la RNase HI est inactivée en présence de topoisomérase I, les R-loops réduisent le niveau dâexpression de nombreux gènes, incluant des gènes de résistance aux stress comme rpoH et grpE. Cette inhibition de lâexpression génique nâest pas accompagnée de la dégradation de lâARN contrairement à ce qui se produit en absence de topoisomérase I. Dans le mutant déficient en RNase HI, la diminution de lâexpression génique réduit la concentration cellulaire de différentes protéines, ce qui altère négativement le taux de croissance et affecte dramatiquement la survie des cellules exposées aux stress de hautes températures et oxydatifs. Une inactivation de RecA, le facteur essentiel qui déclenche la réponse SOS et le cSDR, ne restaure pas lâexpression génique. Ceci démontre que la réponse SOS et le cSDR ne sont pas impliqués dans lâinhibition de lâexpression génique en absence de RNase HI. La croissance bactérienne qui est inhibée en absence de topoisomérase I, reprend lorsque lâexcès de surenroulement négatif est éliminé. En absence de RNase HI et de topoisomérase I, le surenroulement négatif est très relaxé. Il semble que la réponse cellulaire suite à la formation de R-loops, soit la relaxation du surenroulement négatif. Selon le même principe, des mutations compensatoires dans la gyrase apparaissent en absence de topoisomérase I et réduisent lâaccumulation de surenroulement négatif. Ceci supporte fortement lâidée que le surenroulement négatif joue un rôle primordial dans la formation de R-loop. La régulation du surenroulement négatif de lâADN est donc une tâche essentielle pour la cellule. Elle favorise notamment lâexpression génique optimale durant la croissance et lâexposition aux stress, en limitant la formation de R-loops. La topoisomérase I et la RNase HI jouent un rôle important et complémentaire dans ce processus.