919 resultados para Adaptive systems


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we consider the co-evolutionary dynamics of IS engagement where episodic change of implementation increasingly occurs within the context of linkages and interdependencies between systems and processes within and across organisations. Although there are many theories that interpret the various motors of change be it lifecycle, teleological, dialectic or evolutionary, our paper attempts to move towards a unifying view of change by studying co-evolutionary dynamics from a complex systems perspective. To understand how systems and organisations co-evolve in practice and how order emerges, or fails to emerge, we adopt complex adaptive systems theory to incorporate evolutionary and teleological motors, and actor-network theory to incorporate dialectic motors. We illustrate this through the analysis of the implementation of a novel academic scheduling system at a large research-intensive Australian university.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Models at runtime can be defined as abstract representations of a system, including its structure and behaviour, which exist in tandem with the given system during the actual execution time of that system. Furthermore, these models should be causally connected to the system being modelled, offering a reflective capability. Significant advances have been made in recent years in applying this concept, most notably in adaptive systems. In this paper we argue that a similar approach can also be used to support the dynamic generation of software artefacts at execution time. An important area where this is relevant is the generation of software mediators to tackle the crucial problem of interoperability in distributed systems. We refer to this approach as emergent middleware, representing a fundamentally new approach to resolving interoperability problems in the complex distributed systems of today. In this context, the runtime models are used to capture meta-information about the underlying networked systems that need to interoperate, including their interfaces and additional knowledge about their associated behaviour. This is supplemented by ontological information to enable semantic reasoning. This paper focuses on this novel use of models at runtime, examining in detail the nature of such runtime models coupled with consideration of the supportive algorithms and tools that extract this knowledge and use it to synthesise the appropriate emergent middleware.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computational reflection is a well-established technique that gives a program the ability to dynamically observe and possibly modify its behaviour. To date, however, reflection is mainly applied either to the software architecture or its implementation. We know of no approach that fully supports requirements reflection- that is, making requirements available as runtime objects. Although there is a body of literature on requirements monitoring, such work typically generates runtime artefacts from requirements and so the requirements themselves are not directly accessible at runtime. In this paper, we define requirements reflection and a set of research challenges. Requirements reflection is important because software systems of the future will be self-managing and will need to adapt continuously to changing environmental conditions. We argue requirements reflection can support such self-adaptive systems by making requirements first-class runtime entities, thus endowing software systems with the ability to reason about, understand, explain and modify requirements at runtime. © 2010 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Constructing and executing distributed systems that can adapt to their operating context in order to sustain provided services and the service qualities are complex tasks. Managing adaptation of multiple, interacting services is particularly difficult since these services tend to be distributed across the system, interdependent and sometimes tangled with other services. Furthermore, the exponential growth of the number of potential system configurations derived from the variabilities of each service need to be handled. Current practices of writing low-level reconfiguration scripts as part of the system code to handle run time adaptation are both error prone and time consuming and make adaptive systems difficult to validate and evolve. In this paper, we propose to combine model driven and aspect oriented techniques to better cope with the complexities of adaptive systems construction and execution, and to handle the problem of exponential growth of the number of possible configurations. Combining these techniques allows us to use high level domain abstractions, simplify the representation of variants and limit the problem pertaining to the combinatorial explosion of possible configurations. In our approach we also use models at runtime to generate the adaptation logic by comparing the current configuration of the system to a composed model representing the configuration we want to reach. © 2008 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This first edition of the workshop Model-driven Software Adaptation (M-ADAPT'07) took place in the Technische Universität Berlin with the International Conference ECOOP'07 in the beautiful and buzzing city of Berlin, on the 30th of July, 2007. The workshop was organized by Gordon Blair, Nelly Bencomo, and Robert France. Participants explored how to develop appropriate model-driven approaches to model, analyze, and validate the volatile properties of the behaviour of adaptive systems and its environments. This report gives an overview of the presentations as well as an account of the fruitful discussions that took place at M-ADAPT'07. © 2008 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A self-adaptive system adjusts its configuration to tolerate changes in its operating environment. To date, requirements modeling methodologies for self-adaptive systems have necessitated analysis of all potential system configurations, and the circumstances under which each is to be adopted. We argue that, by explicitly capturing and modelling uncertainty in the operating environment, and by verifying and analysing this model at runtime, it is possible for a system to adapt to tolerate some conditions that were not fully considered at design time. We showcase in this paper our tools and research results. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper present a technique based on genetic algorithms for generating online adaptive services. Online adaptive systems provide flexible services to a mass of clients/users for maximising some system goals, they dynamically adapt the form and the content of the issued services while the population of clients evolve over time. The idea of online genetic algorithms (online GAs) is to use the online clients response behaviour as a fitness function in order to produce the next generation of services. The principle implemented in online GAs, “the application environment is the fitness”, allow modelling highly evolutionary domains where both services providers and clients change and evolve over time. The flexibility and the adaptive behaviour of this approach seems to be very relevant and promising for applications characterised by highly dynamical features such as in the web domain (online newspapers, e- markets, websites and advertising engines). Nevertheless the proposed technique has a more general aim for application environments characterised by a massive number of anonymous clients/users which require personalised services, such as in the case of many new IT applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems. This book is one of the outcomes of the Dagstuhl Seminar 11481 on models@run.time held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an innovative approach for enhancing digital libraries functionalities. An innovative distributed architecture involving digital libraries for effective and efficient knowledge sharing was developed. In the frame of this architecture semantic services were implemented, offering multi language and multi culture support, adaptability and knowledge resources recommendation, based on the use of ontologies, metadata and user modeling. New methods for teacher education using digital libraries and knowledge sharing were developed. These new methods were successfully applied in more than 15 pilot experiments in seven European countries, with more than 3000 teachers trained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heuristics, simulation, artificial intelligence techniques and combinations thereof have all been employed in the attempt to make computer systems adaptive, context-aware, reconfigurable and self-managing. This paper complements such efforts by exploring the possibility to achieve runtime adaptiveness using mathematically-based techniques from the area of formal methods. It is argued that formal methods @ runtime represents a feasible approach, and promising preliminary results are summarised to support this viewpoint. The survey of existing approaches to employing formal methods at runtime is accompanied by a discussion of their challenges and of the future research required to overcome them. © 2011 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-adaptive systems (SASs) should be able to adapt to new environmental contexts dynamically. The uncertainty that demands this runtime self-adaptive capability makes it hard to formulate, validate and manage their requirements. QuantUn is part of our longer-term vision of requirements reflection, that is, the ability of a system to dynamically observe and reason about its own requirements. QuantUn's contribution to the achievement of this vision is the development of novel techniques to explicitly quantify uncertainty to support dynamic re-assessment of requirements and therefore improve decision-making for self-adaption. This short paper discusses the research gap we want to fill, present partial results and also the plan we propose to fill the gap.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two classes of software that are notoriously difficult to develop on their own are rapidly merging into one. This will affect every key service that we rely upon in modern society, yet a successful merge is unlikely to be achievable using software development techniques specific to either class. This paper explains the growing demand for software capable of both self-adaptation and high integrity, and advocates the use of a collection of "@runtime" techniques for its development, operation and management. We summarise early research into the development of such techniques, and discuss the remaining work required to overcome the great challenge of self-adaptive high-integrity software. © 2011 ACM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peer reviewed