747 resultados para Adaptive clustering
Resumo:
Zonal management in vineyards requires the prior delineation of stable yield zones within the parcel. Among the different methodologies used for zone delineation, cluster analysis of yield data from several years is one of the possibilities cited in scientific literature. However, there exist reasonable doubts concerning the cluster algorithm to be used and the number of zones that have to be delineated within a field. In this paper two different cluster algorithms have been compared (k-means and fuzzy c-means) using the grape yield data corresponding to three successive years (2002, 2003 and 2004), for a ‘Pinot Noir’ vineyard parcel. Final choice of the most recommendable algorithm has been linked to obtaining a stable pattern of spatial yield distribution and to allowing for the delineation of compact and average sized areas. The general recommendation is to use reclassified maps of two clusters or yield classes (low yield zone and high yield zone) and, consequently, the site-specific vineyard management should be based on the prior delineation of just two different zones or sub-parcels. The two tested algorithms are good options for this purpose. However, the fuzzy c-means algorithm allows for a better zoning of the parcel, forming more compact areas and with more equilibrated zonal differences over time.
Resumo:
Vitamin D (VitD), which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body's immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend "booster" of VitD at vaccination time to enhance vaccine response.
Resumo:
Tulevaisuudessa siirrettävät laitteet, kuten matkapuhelimet ja kämmenmikrot, pystyvät muodostamaan verkkoyhteyden käyttäen erilaisia yhteysmenetelmiä eri tilanteissa. Yhteysmenetelmillä on toisistaan poikkeavat viestintäominaisuudet mm. latenssin, kaistanleveyden, virhemäärän yms. suhteen. Langattomille yhteysmenetelmille on myös ominaista tietoliikenneyhteyden ominaisuuksien voimakas muuttuminen ympäristön suhteen. Parhaan suorituskyvyn ja käytettävyyden saavuttamiseksi, on siirrettävän laitteen pystyttävä mukautumaan käytettyyn viestintämenetelmään ja viestintäympäristössä tapahtuviin muutoksiin. Olennainen osa tietoliikenteessä ovat protokollapinot, jotka mahdollistavat tietoliikenneyhteyden järjestelmien välillä tarjoten verkkopalveluita päätelaitteen käyttäjäsovelluksille. Jotta protokollapinot pystyisivät mukautumaan tietyn viestintäympäristön ominaisuuksiin, on protokollapinon käyttäytymistä pystyttävä muuttamaan ajonaikaisesti. Perinteisesti protokollapinot ovat kuitenkin rakennettu muuttumattomiksi niin, että mukautuminen tässä laajuudessa on erittäin vaikeaa toteuttaa, ellei jopa mahdotonta. Tämä diplomityö käsittelee mukautuvien protokollapinojen rakentamista käyttäen komponenttipohjaista ohjelmistokehystä joka mahdollistaa protokollapinojen ajonaikaisen muuttamisen. Toteuttamalla esimerkkijärjestelmän, ja mittaamalla sen suorituskykyä vaihtelevassa tietoliikenneympäristössä, osoitamme, että mukautuvat protokollapinot ovat mahdollisia rakentaa ja ne tarjoavat merkittäviä etuja erityisesti tulevaisuuden siirrettävissä laitteissa.
Resumo:
A method for optimizing the strength of a parametric phase mask for a wavefront coding imaging system is presented. The method is based on an optimization process that minimizes a proposed merit function. The goal is to achieve modulation transfer function invariance while quantitatively maintaining nal image delity. A parametric lter that copes with the noise present in the captured images is used to obtain the nal images, and this lter is optimized. The whole process results in optimum phase mask strength and optimal parameters for the restoration lter. The results for a particular optical system are presented and tested experimentally in the labo- ratory. The experimental results show good agreement with the simulations, indicating that the procedure is useful.
Resumo:
Oral mucosa is a frequent site of primary herpes simplex virus type 1 (HSV-1) infection, whereas intraoral recurrent disease is very rare. Instead, reactivation from latency predominantly results in asymptomatic HSV shedding to saliva or recurrent labial herpes (RLH) with highly individual frequency. The current study aimed to elucidate the role of human oral innate and acquired immune mechanisms in modulation of HSV infection in orolabial region. Saliva was found to neutralize HSV-1, and to protect cells from infection independently of salivary antibodies. Neutralization capacity was higher in saliva from asymptomatic HSV-seropositive individuals compared to subjects with history of RLH or seronegative controls. Neutralization was at least partially associated with salivary lactoferrin content. Further, lactoferrin and peroxidase-generated hypothiocyanite were found to either neutralize HSV-1 or interfere with HSV-1 replication, whereas lysozyme displayed no anti-HSV-1 activity. Lactoferrin was also shown to modulate HSV-1 infection by inhibiting keratinocyte proliferation. RLH susceptibility was further found to be associated with Th2 biased cytokine responses against HSV, and a higher level of anti- HSV-IgG with Th2 polarization, indicating lack of efficiency of humoral response in the control of HSV disease. In a three-dimensional cell culture, keratinocytes were found to support both lytic and nonproductive infection, suggesting HSV persistence in epithelial cells, and further emphasizing the importance of peripheral immune control of HSV. These results suggest that certain innate salivary antimicrobial compounds and Th1 type cellular responses are critically important in protecting the host against HSV disease, implying possible applications in drug, vaccine and gene therapy design.
Resumo:
Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.
Resumo:
The time required to image large samples is an important limiting factor in SPM-based systems. In multiprobe setups, especially when working with biological samples, this drawback can make impossible to conduct certain experiments. In this work, we present a feedfordward controller based on bang-bang and adaptive controls. The controls are based in the difference between the maximum speeds that can be used for imaging depending on the flatness of the sample zone. Topographic images of Escherichia coli bacteria samples were acquired using the implemented controllers. Results show that to go faster in the flat zones, rather than using a constant scanning speed for the whole image, speeds up the imaging process of large samples by up to a 4x factor.
Resumo:
Laboratory and field experiments have demonstrated in many cases that malaria vectors do not feed randomly, but show important preferences either for infected or non-infected hosts. These preferences are likely in part shaped by the costs imposed by the parasites on both their vertebrate and dipteran hosts. However, the effect of changes in vector behaviour on actual parasite transmission remains a debated issue. We used the natural associations between a malaria-like parasite Polychromophilus murinus, the bat fly Nycteribia kolenatii and a vertebrate host the Daubenton's bat Myotis daubentonii to test the vector's feeding preference based on the host's infection status using two different approaches: 1) controlled behavioural assays in the laboratory where bat flies could choose between a pair of hosts; 2) natural bat fly abundance data from wild-caught bats, serving as an approximation of realised feeding preference of the bat flies. Hosts with the fewest infectious stages of the parasite were most attractive to the bat flies that did switch in the behavioural assay. In line with the hypothesis of costs imposed by parasites on their vectors, bat flies carrying parasites had higher mortality. However, in wild populations, bat flies were found feeding more based on the bat's body condition, rather than its infection level. Though the absolute frequency of host switches performed by the bat flies during the assays was low, in the context of potential parasite transmission they were extremely high. The decreased survival of infected bat flies suggests that the preference for less infected hosts is an adaptive trait. Nonetheless, other ecological processes ultimately determine the vector's biting rate and thus transmission. Inherent vector preferences therefore play only a marginal role in parasite transmission in the field. The ecological processes rather than preferences per se need to be identified for successful epidemiological predictions.
Resumo:
The main objective of this study is to assess the potential of the information technology industry in the Saint Petersburg area to become one of the new key industries in the Russian economy. To achieve this objective, the study analyzes especially the international competitiveness of the industry and the conditions for clustering. Russia is currently heavily dependent on its natural resources, which are the main source of its recent economic growth. In order to achieve good long-term economic performance, Russia needs diversification in its well-performing industries in addition to the ones operating in the field of natural resources. The Russian government has acknowledged this and started special initiatives to promote such other industries as information technology and nanotechnology. An interesting industry that is basically less than 20 years old and fast growing in Russia, is information technology. Information technology activities and markets are mainly concentrated in Russia’s two biggest cities, Moscow and Saint Petersburg, and areas around them. The information technology industry in the Saint Petersburg area, although smaller than Moscow, is especially dynamic and is gaining increasing foreign company presence. However, the industry is not yet internationally competitive as it lacks substantial and sustainable competitive advantages. The industry is also merely a potential global information technology cluster, as it lacks the competitive edge and a wide supplier and manufacturing base and other related parts of the whole information technology value system. Alone, the industry will not become a key industry in Russia, but it will, on the other hand, have an important supporting role for the development of other industries. The information technology market in the Saint Petersburg area is already large and if more tightly integrated to Moscow, they will together form a huge and still growing market sufficient for most companies operating in Russia currently and in the future. Therefore, the potential of information technology inside Russia is immense.
Resumo:
The analysis of rockfall characteristics and spatial distribution is fundamental to understand and model the main factors that predispose to failure. In our study we analysed LiDAR point clouds aiming to: (1) detect and characterise single rockfalls; (2) investigate their spatial distribution. To this end, different cluster algorithms were applied: 1a) Nearest Neighbour Clutter Removal (NNCR) in combination with the Expectation?Maximization (EM) in order to separate feature points from clutter; 1b) a density based algorithm (DBSCAN) was applied to isolate the single clusters (i.e. the rockfall events); 2) finally we computed the Ripley's K-function to investigate the global spatial pattern of the extracted rockfalls. The method allowed proper identification and characterization of more than 600 rockfalls occurred on a cliff located in Puigcercos (Catalonia, Spain) during a time span of six months. The spatial distribution of these events proved that rockfall were clustered distributed at a welldefined distance-range. Computations were carried out using R free software for statistical computing and graphics. The understanding of the spatial distribution of precursory rockfalls may shed light on the forecasting of future failures.
Resumo:
In this diploma work advantages of coherent anti-Stokes Raman scattering spectrometry (CARS) and various methods of the quantitative analysis of substance structure with its help are considered. The basic methods and concepts of the adaptive analysis are adduced. On the basis of these methods the algorithm of automatic measurement of a scattering strip size of a target component in CARS spectrum is developed. The algorithm uses known full spectrum of target substance and compares it with a CARS spectrum. The form of a differential spectrum is used as a feedback to control the accuracy of matching. To exclude the influence of a background in CARS spectra the differential spectrum is analysed by means of its second derivative. The algorithm is checked up on the simulated simple spectra and on the spectra of organic compounds received experimentally.
Resumo:
The main objective of this study is to assess the potential of the information technology industry in the Saint Petersburg area to become one of the new key industries in the Russian economy. To achieve this objective, the study analyzes especially the international competitiveness of the industry and the conditions for clustering. Russia is currently heavily dependent on its natural resources, which are the main source of its recent economic growth. In order to achieve good long-term economic performance, Russia needs diversification in its well-performing industries in addition to the ones operating in the field of natural resources. The Russian government has acknowledged this and started special initiatives to promote such other industries as information technology and nanotechnology. An interesting industry that is basically less than 20 years old and fast growing in Russia, is information technology. Information technology activities and markets are mainly concentrated in Russia’s two biggest cities, Moscow and Saint Petersburg, and areas around them. The information technology industry in the Saint Petersburg area, although smaller than Moscow, is especially dynamic and is gaining increasing foreign company presence. However, the industry is not yet internationally competitive as it lacks substantial and sustainable competitive advantages. The industry is also merely a potential global information technology cluster, as it lacks the competitive edge and a wide supplier and manufacturing base and other related parts of the whole information technology value system. Alone, the industry will not become a key industry in Russia, but it will, on the other hand, have an important supporting role for the development of other industries. The information technology market in the Saint Petersburg area is already large and if more tightly integrated to Moscow, they will together form a huge and still growing market sufficient for most companies operating in Russia currently and in the future. Therefore, the potential of information technology inside Russia is immense.