1000 resultados para Action refinement
Resumo:
Es versión en inglés del Plan Integral de Tabaquismo de Andalucía. Publicado en la página web de la Consejería de Salud: www.juntadeandalucia.es/salud (Consejería de Salud / Ciudadanía / Quiénes somos / Planes y Estrategias)
Resumo:
The Comprehensive Heart Disease Action Plan for Andalusia 2005-2009 has been prepared within the framework of the presentations made both in the 3rd Andalusian Health Action Plan and in the Quality Plan of the Public Health System. Consequently, as with these two referral instruments, the improvement in the health results for the citizens of Andalusia continues to be sought without wavering, specifically with regard to meeting the needs and expectations of the population affected by health problems in this area.
Resumo:
In several computer graphics areas, a refinement criterion is often needed to decide whether to goon or to stop sampling a signal. When the sampled values are homogeneous enough, we assume thatthey represent the signal fairly well and we do not need further refinement, otherwise more samples arerequired, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is verysensitive to variability is necessary. In this paper, we present a family of discrimination measures, thef-divergences, meeting this requirement. These convex functions have been well studied and successfullyapplied to image processing and several areas of engineering. Two applications to global illuminationare shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. Weobtain significantly better results than with classic criteria, showing that f-divergences are worth furtherinvestigation in computer graphics. Also a discrimination measure based on entropy of the samples forrefinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a naturalmethod to deal with the adaptive subdivision of the sampling region
Resumo:
The epithelial Na(+) channel (ENaC), located in the apical membrane of renal aldosterone-responsive epithelia, plays an essential role in controlling the Na(+) balance of extracellular fluids and hence blood pressure. As of now, ENaC is the only Na(+) transport protein for which genetic evidence exists for its involvement in the genesis of both hypertension (Liddle's syndrome) and hypotension (pseudohypoaldosteronism type 1). The regulation of ENaC involves a variety of hormonal signals (aldosterone, vasopressin, insulin), but the molecular mechanisms behind this regulation are mostly unknown. Two regulatory proteins have gained interest in recent years: the ubiquitin-protein ligase neural precursor cell-expressed, developmentally downregulated gene 4 isoform Nedd4-2, which negatively controls ENaC cell surface expression, and serum glucocorticoid-inducible kinase 1 (Sgk1), which is an aldosterone- and insulin-dependent, positive regulator of ENaC density at the plasma membrane. Here, we summarize present ideas about Sgk1 and Nedd4-2 and the lines of experimental evidence, suggesting that they act sequentially in the regulatory pathways governed by aldosterone and insulin and regulate ENaC number at the plasma membrane.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) compose a family of three nuclear receptors which act as lipid sensors to modulate gene expression. As such, PPARs are implicated in major metabolic and inflammatory regulations with far-reaching medical consequences, as well as in important processes controlling cellular fate. Throughout this review, we focus on the cellular functions of these receptors. The molecular mechanisms through which PPARs regulate transcription are thoroughly addressed with particular emphasis on the latest results on corepressor and coactivator action. Their implication in cellular metabolism and in the control of the balance between cell proliferation, differentiation and survival is then reviewed. Finally, we discuss how the integration of various intra-cellular signaling pathways allows PPARs to participate to whole-body homeostasis by mediating regulatory crosstalks between organs.
Resumo:
In this chapter we summarize some aspects of the structure-functional relationship of the alpha 1a and alpha 1b-adrenergic receptor subtypes related to the receptor activation process as well as the effect of different alpha-blockers on the constitutive activity of the receptor. Molecular modeling of the alpha 1a and alpha 1b-adrenergic receptor subtypes and computational simulation of receptor dynamics were useful to interpret the experimental findings derived from site directed mutagenesis studies.