1000 resultados para Accumulation rate, biogenic
Resumo:
In this study we present combined high-resolution records of sea surface temperature (SST), phytoplankton productivity, and nutrient cycling in the Benguela Upwelling System (BUS) for the past 3.5 Ma. The SST record provided evidence that upwelling activity off Namibia mainly intensified ca. 2.4-2.0 Ma ago in response to the cooling of the Southern Ocean and the resultant strengthening of trade winds. As revealed by productivity-related proxies, BUS intensification led to a major transition in regional biological productivity when considering the termination of the Matuyama Diatom Maximum (a diatom high-production event). Major oceanic reorganization in the Benguela was accompanied by nutrient source changes, as indicated by a new nitrogen isotopic (delta15N) record that revealed a stepwise increase at ca. 2.4 and ca. 1.5 Ma ago. The change in source region likely resulted from significant changes in intermediate water formation tied to the reorganization of oceanic conditions in the Southern Ocean, which may have in turn mainly controlled the global ocean N cycle, and therefore the N isotopic composition of nutrients since 3.5 Ma ago.
Resumo:
Sediments from five Leg 167 drill sites and three piston cores were analyzed for Corg and CaCO3. Oxygen isotope stratigraphy on benthic foraminifers was used to assign age models to these sedimentary records. We find that the northern and central California margin is characterized by k.y.-scale events that can be found in both the CaCO3 and Corg time series. We show that the CaCO3 events are caused by changes in CaCO3 production by plankton, not by dissolution. We also show that these CaCO3 events occur in marine isotope Stages (MIS) 2, 3, and 4 during Dansgaard/Oeschger interstadials. They occur most strongly, however, on the MIS 5/4 glaciation and MIS 2/1 deglaciation. We believe that the link between the northeastern Pacific Ocean and North Atlantic is primarily transmitted by the atmosphere, not the ocean. Highest CaCO3 production and burial occurs when the surface ocean is somewhat cooler than the modern ocean, and the surface mixed layer is somewhat more stable.
Resumo:
We studied preservation/dissolution cycles and paleoproductivity in eight sediment cores from the Peru Basin south of the highly productive surface waters of the eastern equatorial Pacific. Stratigraphy is based on stable oxygen isotopes and on combined magnetostratigraphy and biostratigraphy. Sediment cores which span the last 8 m.y., were retrieved during cruise 79 with RV SONNE close to the carbonate compensation depth (CCD). In general, sediments show Pacific-type carbonate cycles. We interpret a pronounced carbonate peak between 6 and 7 Ma as the result of a western and northern extension of the highly productive Peru Current. Decreased carbonate contents from the late Miocene to the late Pliocene might be associated with a slow contraction of the latitudinal extent of the high-productivity belt north of the study areas. During the Pliocene, carbonate variations showed 400 kyr cycles indicating the growth and decay of ice sheets, which should have been associated with pulsations of the Antarctic ice cap. An abrupt collapse of the carbonate system occurred at 2.4 Ma. Higher frequency variations of the carbonate record indicate the major increase of the northern hemisphere glaciation. During the Quaternary, carbonate fluxes are high during glacials and low during interglacials. Large amplitude variations with long broad minima and maxima, associated with small migrations of the lysocline and the CCD (< 200 m), are indicative of the preservation/dissolution history in the Peru Basin. During the early Pleistocene, climatic forcing by the 41 kyr obliquity cycle is not observed in the carbonate record. During the last 800 kyr, variability in the carbonate record was dominated by the 100 kyr eccentricity cycle. Fluxes of biogenic material (calcium carbonate, organic carbon, opal, and barium) were greatest during glacials, which imply higher productivity and export production of the Peru Current during cold climatic periods. Dissolution was greatest during interglacials as inferred from the relatively poor preservation of planktonic foraminifera and from the low accumulation rate of carbonate. After the Mid-Brunhes Event (400 ka), we observe a plateaulike shift to enhanced dissolution and to intensified productivity.