957 resultados para Accelerated Solvent Extraction (Dionex ASE)
Resumo:
The literature relating to the extraction of the aromatics, benzene, toluene and xylene (BTX) using different commercial solvents, and to mixer-settler design and performance, has been reviewed. Liquid-liquid equilibria of the ternary systems: hexane-benzene-sulfolane, n-heptane-toluene-sulfolane, and octane-xylene-sulfolane were determined experimentally at temperatures of 30oC, 35oC, and 40oC. The work was then extended to a multicomponent system. The data were correlated by using Hand's method and were found to be in a good agreement with theoretical predictions using the UNIFAC method. A study was made of the performance of a 10-stage laboratory mixer-settler cascade for the extraction of BTX from a synthetic reformate utilizing sulfolane as a solvent. Murphree stage efficiency decreased with stage number but 99% extraction was achievable within 4 stages. The effects of temperature, phase ratio, and agitator speed were investigated. The efficiency increased with agitator speed but > 1050 rpm resulted in secondary haze formation. An optimum temperature of 30oC was selected from the phase equilibria; the optimum solvent: feed ratio was 3:1 for 4 stages. The experimental overall mass transfer coefficients were compared with those predicted from single drop correlations and were in all cases greater, by a factor of 1.5 to 3, due to the surface renewal associated with drop break-up and coalescence promoted by agitation. A similar investigation was performed using real reformate from the Kuwait Oil Company. The phase ratios were in the range 0.5 to 1 to 3.25 to 1, the agitator speed 1050 rpm, and the operating temperature 30oC. A maximum recovery of 99% aromatics was achieved in 4 stages at a phase ratio of 3.25 to 1. A backflow model was extended to simulate conditions in the mixer-settler cascade with this multicomponent system. Overall mass transfer coefficients were estimated by obtaining the best fit between experimental and predicted concentration profiles. They were up to 10% greater than those with the synthetic feed but close agreement was not possible because the distribution coefficient and phase ratio varied with stage number. Sulfolane was demonstrated to be an excellent solvent for BTX recovery and a mixer-settler cascade was concluded to be a technically viable alternative to agitated columns for this process.
Resumo:
Les matériaux mésoporeux à base de silice sont des plateformes polyvalentes qui offrent une réponse aux besoins de domaines variés comme l’environnement, la santé et les énergies. La fonctionnalisation avec des groupements organiques en fait des matériaux hybrides qu’il est aisé d’orienter vers une application spécifique. Ainsi, afin de fournir une alternative aux procédés industriels, dommageables pour l’environnement actuellement utilisés pour l’extraction et la purification des terres rares, à savoir l’extraction liquide-liquide (ELL) majoritairement, les silices mésoporeuses ont été sollicitées à titre d’adsorbant dans l’extraction sur phase solide. Cette dernière, en opposition à l’ELL, présente de nombreux avantages dont, la suppression des solvants organiques, le contrôle de la sélectivité envers et parmi le groupe des éléments de terres rares (ÉTR) à travers l’ancrage du ligand sur un support solide et la possibilité de réutiliser plusieurs fois l’adsorbant. Les ÉTR sont des métaux qui participent à la transition vers des technologies moins coûteuses en énergie, il est donc primordial de rendre leurs procédés d’extraction plus verts. Dans le cadre de ce travail, différents types de silices ordonnées mésoporeuses, MCM-41, SBA-15 et SBA-16, ont été synthétisées, fonctionnalisées avec un ligand approprié, et leurs comportements vis à vis de ces éléments, comparés. Ces matériaux ont de nombreux points communs mais certaines caractéristiques les différencient néanmoins : la taille et la géométrie des pores, la connexion entre les pores, l’épaisseur des parois, l’accessibilité aux pores ou encore la diffusion des liquides ou gaz dans la matrice. C’est pourquoi, le but de cette étude est d’élucider l’impact de ces diverses propriétés sur l’adsorption sélective des ÉTR en condition statique et dynamique.
Resumo:
The aim of this study was to optimize the aqueous extraction conditions for the recovery of phenolic compounds and antioxidant capacity of lemon pomace using response surface methodology. An experiment based on Box–Behnken design was conducted to analyse the effects of temperature, time and sample-to-water ratio on the extraction of total phenolic compounds, total flavonoids, proanthocyanidins and antioxidant capacity. Sample-to-solvent ratio had a negative effect on all the dependent variables, while extraction temperature and time had a positive effect only on TPC yields and ABTS antioxidant capacity. The optimal extraction conditions were 95 oC, 15 min, and a sample-to-solvent ratio of 1:100 g/ml. Under these conditions, the aqueous extracts had the same content of TPC and TF as well as antioxidant capacity in comparison with those of methanol extracts obtained by sonication. Therefore these conditions could be applied for further extraction and isolation of phenolic compounds from lemon pomace.
Resumo:
Evaluation of the quality of the environment is essential for human wellness as pollutants in trace amounts can cause serious health problem. Nitrosamines are a group of compounds that are considered potential carcinogens and can be found in drinking water (as disinfection byproducts), foods, beverages and cosmetics. To monitor the level of these compounds to minimize daily intakes, fast and reliable analytical techniques are required. As these compounds are relatively highly polar, extraction and enrichment from environmental samples (aqueous) are challenging. Also, the trend of analytical techniques toward the reduction of sample size and minimization of organic solvent use demands new methods of analysis. In light of fulfilling these requirements, a new method of online preconcentration tailored to an electrokinetic chromatography is introduced. In this method, electroosmotic flow (EOF) was suppressed to increase the interaction time between analyte and micellar phase, therefore the only force to mobilize the neutral analytes is the interaction of analyte with moving micelles. In absence of EOF, polarity of applied potential was switched (negative or positive) to force (anionic or cationic) micelles to move toward the detector. To avoid the excessive band broadening due to longer analysis time caused by slow moving micelles, auxiliary pressure was introduced to boost the micelle movement toward the detector using an in house designed and built apparatus. Applying the external auxiliary pressure significantly reduced the analysis times without compromising separation efficiency. Parameters, such as type of surfactants, composition of background electrolyte (BGE), type of capillary, matrix effect, organic modifiers, etc., were evaluated in optimization of the method. The enrichment factors for targeted analytes were impressive, particularly; cationic surfactants were shown to be suitable for analysis of nitrosamines due to their ability to act as hydrogen bond donors. Ammonium perfluorooctanoate (APFO) also showed remarkable results in term of peak shapes and number of theoretical plates. It was shown that the separation results were best when a high conductivity sample was paired with a BGE of lower conductivity. Using higher surfactant concentrations (up to 200 mM SDS) than usual (50 mM SDS) for micellar electrokinetic chromatography (MEKC) improved the sweeping. A new method for micro-extraction and enrichment of highly polar neutral analytes (N-Nitrosamines in particular) based on three-phase drop micro-extraction was introduced and its performance studied. In this method, a new device using some easy-to-find components was fabricated and its operation and application demonstrated. Compared to conventional extraction methods (liquid-liquid extraction), consumption of organic solvents and operation times were significantly lower.
Resumo:
There is scientific evidence demonstrating the benefits of mushrooms ingestion due to their richness in bioactive compounds such as mycosterols, in particular ergosterol [I]. Agaricus bisporus L. is the most consumed mushroom worldwide presenting 90% of ergosterol in its sterol fraction [2]. Thus, it is an interesting matrix to obtain ergosterol, a molecule with a high commercial value. According to literature, ergosterol concentration can vary between 3 to 9 mg per g of dried mushroom. Nowadays, traditional methods such as maceration and Soxhlet extraction are being replaced by emerging methodologies such as ultrasound (UAE) and microwave assisted extraction (MAE) in order to decrease the used solvent amount, extraction time and, of course, increasing the extraction yield [2]. In the present work, A. bisporus was extracted varying several parameters relevant to UAE and MAE: UAE: solvent type (hexane and ethanol), ultrasound amplitude (50 - 100 %) and sonication time (5 min-15 min); MAE: solvent was fixed as ethanol, time (0-20 min), temperature (60-210 •c) and solid-liquid ratio (1-20 g!L). Moreover, in order to decrease the process complexity, the pertinence to apply a saponification step was evaluated. Response surface methodology was applied to generate mathematical models which allow maximizing and optimizing the response variables that influence the extraction of ergosterol. Concerning the UAE, ethanol proved to be the best solvent to achieve higher levels of ergosterol (671.5 ± 0.5 mg/100 g dw, at 75% amplitude for 15 min), once hexane was only able to extract 152.2 ± 0.2 mg/100 g dw, in the same conditions. Nevertheless, the hexane extract showed higher purity (11%) when compared with the ethanol counterpart ( 4% ). Furthermore, in the case of the ethanolic extract, the saponification step increased its purity to 21%, while for the hexane extract the purity was similar; in fact, hexane presents higher selectivity for the lipophilic compounds comparatively with ethanol. Regarding the MAE technique, the results showed that the optimal conditions (19 ± 3 min, 133 ± 12 •c and 1.6 ± 0.5 g!L) allowed higher ergosterol extraction levels (556 ± 26 mg/100 g dw). The values obtained with MAE are close to the ones obtained with conventional Soxhlet extraction (676 ± 3 mg/100 g dw) and UAE. Overall, UAE and MAE proved to he efficient technologies to maximize ergosterol extraction yields.
Resumo:
Betalains are plant derived natural pigments that are presently gaining popularity for use as natural colorants in food industry. Although being betalains from red beetroot already used as food colorant (E- 162), these compounds are not as well studied as compared to other natural pigments such as anthocyanins, carotenoids or chlorophylls (I]. Since food additives are on the focus of public interest, it is becoming increasingly important to meet consumers' expectations for natural and healthy products. Hence, the search for new plant-derived colorants for the food industry is still necessary [2]. Betalains were originally called 'nitrogenous anthocyanins', which incorrectly implied structural similarities between the two pigment classes. There are two structurally different types of betalains: the yellow/orange betaxanthins which are the condensation products of betalamic acid and assorted amino compounds, and the red betacyanins which are formed by glycosylation and acylation of cyclo-DOPA [3]. Looking at the chemical structure of the pigment, the addition of an acid to the extraction solvent will increase the affinity of the pigment with the solvent. The aim of this study was to use Gomphrena globosa L. flowers, as an alternative plant source to obtain these pigments and to evaluate the best acid to be used within the extraction procedure. For that purpose three different acids (acetic, hydrochloric and phosphoric acids, all ofthem allowed by the food industry), adjusted at the same pH, were tested during a maceration extraction procedure. After the extraction a purification through C18 column was performed in order to obtain a more concentrate extract in betacyanins. The results were analysed by HPLC-PDA-MSIESI. The betacyanin profile allowed the identification of gomphrenin IIJIII and isogomphrenin IIIIII and the best results were achieved by performing the extraction procedure using hydrochloric acid (6.6 mg/g extract), while phosphoric acid only presented trace amounts of these compounds. When acetic acid was used, the pigment extracted was 6.8 times less (0.97 mg/g extract) when compared to HCI. In conclusion hydrochloric acid can be considered the most suitable acid to be applied in the extraction procedure of these pigments.
Resumo:
Tomato is the second most important vegetable crop worldwide and a rich source of industrially interesting antioxidants. Hence, the microwave-assisted extraction of hydrophilic (H) and lipophilic (L) antioxidants from a surplus tomato crop was optimized using response surface methodology. The relevant independent variables were temperature (T), extraction time (t), ethanol concentration (Et) and solid/liquid ratio (S/L). The concentration-time response methods of crocin and β-carotene bleaching were applied, since they are suitable in vitro assays to evaluate the antioxidant activity of H and L matrices, respectively. The optimum operating conditions that maximized the extraction were as follows: t, 2.25 min; T, 149.2 ºC; Et, 99.1 %; and S/L, 45.0 g/L for H antioxidants; and t, 15.4 min; T, 60.0 ºC; Et, 33.0 %; and S/L, 15.0 g/L for L antioxidants. This industrial approach indicated that surplus tomatoes possess a high content of antioxidants, offering an alternative source for obtaining natural value-added compounds. Additionally, by testing the relationship between the polarity of the extraction solvent and the antioxidant activity of the extracts in H and L media (polarity-activity relationship), useful information for the study of complex natural extracts containing components with variable degrees of polarity was obtained.
Resumo:
© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Resumo:
Strawberries are an important source of phytochemicals, namely vitamins and phenolic compounds such as anthocyanins and tannins with antioxidant properties [1]. The yield and phenolic content of natural extracts are dependent on the conditions used for extraction [2]. In the present work three different types of extracting solutions (methanol, ethanol:water and aceton:water), two times of extraction (15 and 60 min) and three ratios of solid/solvent (5/25, 5/50 and 5/100 g/mL) were tested in order to evaluate the efficiency of the extraction of phenolic compounds. Phenolic compounds were determined by Folin-Ciocalteu method [3]. Each assay was performed in triplicate. Regarding the extraction solution, it was possible to observe a slight tendency towards a higher efficiency of acetone:water (AcO:H2O, 60:40), but the differences mioght not be statistically significant. A longer time of contact, 60 min as opposed to 15 min, did not show advantages in the yield of extraction. Considering the factors under study, the results obtained showed that volume of extraction solution was the parameter that most influenced the values obtained. Using a higher volume lead to an increase in the amount of phenolic compounds extracted, in a more pronounced way for 15 min of extraction. For a volume of 25 mL the amount of phenolic compounds quantified ranged from 2.13-2.41 mg GAE/g, and increased 30-68% when it was used 50 mL of solution. Using 100 mL of solution, it was extracted twice as double of phenolic compounds. In case of 60 min, the amount of phenolic compounds quantified in samples obtained with 25 mL of solution ranged from 2.32-2.97 mg GAE/g, and increased for 2.43-4.27 mg GAE/g and 3.98-4.68 mg GAE/g when was used 50 and 100 mL, respectively.
Resumo:
A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.
Clustering of Protein Structures Using Hydrophobic Free Energy And Solvent Accessibility of Proteins