983 resultados para Academic library
Resumo:
The generalized Gibbs sampler (GGS) is a recently developed Markov chain Monte Carlo (MCMC) technique that enables Gibbs-like sampling of state spaces that lack a convenient representation in terms of a fixed coordinate system. This paper describes a new sampler, called the tree sampler, which uses the GGS to sample from a state space consisting of phylogenetic trees. The tree sampler is useful for a wide range of phylogenetic applications, including Bayesian, maximum likelihood, and maximum parsimony methods. A fast new algorithm to search for a maximum parsimony phylogeny is presented, using the tree sampler in the context of simulated annealing. The mathematics underlying the algorithm is explained and its time complexity is analyzed. The method is tested on two large data sets consisting of 123 sequences and 500 sequences, respectively. The new algorithm is shown to compare very favorably in terms of speed and accuracy to the program DNAPARS from the PHYLIP package.
Resumo:
High-resolution measurements of velocity and physio-chemistry were conducted before, during and after the passage of a transient front in a small subtropical system about 2.1 km upstream of the river mouth. Detailed acoustic Doppler velocimetry measurements, conducted continuously at 25 Hz, showed the existence of transverse turbulent shear between 300 s prior to the front passage and 1300 s after. This was associated with an increased level of suspended sediment concentration fluctuations, some transverse shear next to the bed and some surface temperature anomaly.
Resumo:
We give conditions on f involving pairs of lower and upper solutions which lead to the existence of at least three solutions of the two point boundary value problem y" + f(x, y, y') = 0, x epsilon [0, 1], y(0) = 0 = y(1). In the special case f(x, y, y') = f(y) greater than or equal to 0 we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and of Lakshmikantham et al.
Resumo:
“Closing the gap in curriculum development leadership” is a Carrick-funded University of Queensland project which is designed to address two related gaps in current knowledge and in existing professional development programs for academic staff. The first gap is in our knowledge of curriculum and pedagogical issues as they arise in relation to multi-year sequences of study, such as majors in generalist degrees, or core programs in more structured degrees. While there is considerable knowledge of curriculum and pedagogy at the course or individual unit of study level (e.g. Philosophy I), there is very little properly conceptualised, empirically informed knowledge about student learning (and teaching) over, say, a three-year major sequence in a traditional Arts or Sciences subject. The Carrick-funded project aims to (begin to) fill this gap through bottom-up curriculum development projects across the range of UQ’s offerings. The second gap is in our professional development programs and, indeed, in our recognition and support for the people who are in charge of such multi-year sequences of study. The major convener or program coordinator is not as well supported, in Australian and overseas professional development programs, as the lecturer in charge of a single course (or unit of study). Nor is her work likely to be taken account of in workload calculations or for the purposes of promotion and career advancement more generally. The Carrick-funded project aims to fill this gap by developing, in consultation with crucial stakeholders, amendments to existing university policies and practices. The attached documents provide a useful introduction to the project. For more information, please contact Fred D’Agostino at f.dagostino@uq.edu.au.
Resumo:
Background: The University of Queensland has through an Australian Government initiative, established a Rural Clinical Division (RCD) at four regional sites in the southern and central Queensland. Over the fi rst four years of the existence of the RCD, an integrated package of innovative medical education has been developed. Method: The integrated aspects of the RCD program include: The Rural Medical Rotation: Every medical student undertakes an eight week rural rotation in Year 3. Year 3 and 4 MBBS - 100 students are currently spending one to two years in the rural school and demand is increasing. Interprofessional Education - Medical and Allied Health students attend lectures, seminars and workshops together and often share the same rural clinical placement. Rural health projects - allow students to undertake a project of benefi t to the rural community. Information Technology (IT) - the Clinical Discussion Board (CDB) and Personal Digital Assistants (PDA) demonstrate the importance of IT to medical students in the 21st century. Changing the Model of Medical Education - The Leichhardt Community Attachment Placement (LCAP), is a pilot study that resulted in the addition of three interns to the rural workforce. All aspects of the RCD are evaluated with surveys using both qualitative and quantitative free response questions, completed by all students regularly throughout the academic year. Results: Measures of impact include: Student satisfaction and quality of teaching surveys – 86-91% of students improved their clinical skills and understanding across all rotations. Academic results and progress – RCD students out-perform their urban colleagues. Intent to work in rural areas – 90% of students reported a greater interest in rural medicine. Intern numbers – rural / regional intern placements are increasing. Conclusions: The RCD proves to be a site for innovations all designed to help reach our primary goal of fostering increased recruitment of a rural medical workforce.
Resumo:
A sophisticated style of mentoring has been found to be essential to support engineering student teams undertaking technically demanding, real-world problems as part of a Project-Centred Curriculum (PCC) at The University of Queensland. The term ‘triple-objective’ mentoring was coined to define mentoring that addresses not only the student’s technical goal achievement but also their time and team management. This is achieved through a number of formal mentor meetings that are informed by a confidential instrument which requires students to individually reflect on team processes prior to the meeting, and a checklist of technical requirements against which the interim student team progress and achievements are assessed. Triple-objective mentoring requires significant time input and coordination by the academic but has been shown to ensure effective student team work and learning undiminished by team dysfunction. Student feedback shows they value the process and agree that the tools developed to support the process are effective in developing and assessing team work and skills with average scores mostly above 3 on a four point scale.
Resumo:
This study describes the pedagogical impact of real-world experimental projects undertaken as part of an advanced undergraduate Fluid Mechanics subject at an Australian university. The projects have been organised to complement traditional lectures and introduce students to the challenges of professional design, physical modelling, data collection and analysis. The physical model studies combine experimental, analytical and numerical work in order to develop students’ abilities to tackle real-world problems. A first study illustrates the differences between ideal and real fluid flow force predictions based upon model tests of buildings in a large size wind tunnel used for research and professional testing. A second study introduces the complexity arising from unsteady non-uniform wave loading on a sheltered pile. The teaching initiative is supported by feedback from undergraduate students. The pedagogy of the course and projects is discussed with reference to experiential, project-based and collaborative learning. The practical work complements traditional lectures and tutorials, and provides opportunities which cannot be learnt in the classroom, real or virtual. Student feedback demonstrates a strong interest for the project phases of the course. This was associated with greater motivation for the course, leading in turn to lower failure rates. In terms of learning outcomes, the primary aim is to enable students to deliver a professional report as the final product, where physical model data are compared to ideal-fluid flow calculations and real-fluid flow analyses. Thus the students are exposed to a professional design approach involving a high level of expertise in fluid mechanics, with sufficient academic guidance to achieve carefully defined learning goals, while retaining sufficient flexibility for students to construct there own learning goals. The overall pedagogy is a blend of problem-based and project-based learning, which reflects academic research and professional practice. The assessment is a mix of peer-assessed oral presentations and written reports that aims to maximise student reflection and development. Student feedback indicated a strong motivation for courses that include a well-designed project component.
Resumo:
Although plant growth is often limited at high pH, little is known about root-induced changes in the rhizospheres of plants growing in alkaline soils. The effect of Mn deficiency in Rhodes grass (Chloris gayana cv. Pioneer) and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. Rhizosphere pH was measured quantitatively, with a micro pH electrode, and qualitatively, with an agar/pH indicator solution. Manganese deficiency in Rhodes grass increased root-induced acidification of the rhizosphere in a soil profile in which N was supplied entirely as NO3-. Rhizosphere pH in the Mn deficient plants was up to 1.22 pH units lower than that of the bulk soil, while only 0.90 to 0.62 pH units lower in plants supplied with adequate Mn. When soil N was supplied entirely as NO3-, rhizosphere acidification was more efficient in inoculated lucerne (1.75 pH unit decrease) than in non-inoculated lucerne (1.16 pH unit decrease). This difference in capacity to lower rhizosphere pH is attributable to the ability of the inoculated lucerne to fix atmospheric N2 rather than relying on the soil N (NO3 ) reserves as the non-inoculated plants. Rhizosphere acidification in both Rhodes grass and lucerne was greatest in the meristematic root zone and least in the maturation root zone.