947 resultados para ARBITRARY MAGNETIC-FIELD
Resumo:
The magnetic-field and confinement effects on the Land, factor in AlxGa1-xAs parabolic quantum wells under magnetic fields applied parallel or perpendicular to the growth direction are theoretically studied. Calculations are performed in the limit of low temperatures and low electron density in the heterostructure. The g factor is obtained by taking into account the effects of non-parabolicity and anisotropy of the conduction band through the 2 x 2 Ogg-McCombe Hamiltonian, and by including the cubic Dresselhaus spin-orbit term. A simple formula describing the magnetic-field dependence of the effective Land, factor is analytically derived by using the Rayleigh-Schrodinger perturbation theory, and it is found in good agreement with previous experimental studies devoted to understand the behavior of the g factor, as a function of an applied magnetic field, in semiconductor heterostructures. Present numerical results for the effective Land, factor are shown as functions of the quantum-well parameters and magnetic-field strength, and compared with available experimental measurements.
Resumo:
We report magnetic data of free standing films of poly( aniline) (PANI) protonated with a plasticizing di-ester of succinic acid. The data have been obtained using the electron spin resonance (ESR) technique at two different frequencies, X-band (9.4 GHz) and Q-band ( 34 GHz), on one hand, and by magnetization measurements in broad ranges of temperatures and magnetic fields on the other hand. All the data can be explained assuming a transition as a function of temperature from delocalized magnetic moments in the valence band to localized positive polarons in several antiferromagnetically correlated bands. By increasing the magnetic field, the magnetic properties are affected in several ways. An intra-band admixture of states occurs; it contributes to increase the spins' localization and finally promotes an antiferromagnetic-metamagnetic transition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that the formation of condensates in the presence of a constant magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without a chemical potential. The value of the condensate as well as other observables are shown to become nonanalytic at finite temperature.
Resumo:
The magnetostatic field of an infinite rectilinear current placed in the stationary gravitational field of a rotating cosmic string is found. An interesting aspect of this problem is that although the metric is mathematically very simple, its physical meaning is not trivial. It depends only on topological parameters. So, the cosmic string vacuum space-time is locally equivalent to the Minkowski space-time, but not globally. The calculations are so simple that they can easily be shown in the classroom. © 1997 American Association of Physics Teachers.
Resumo:
Considering the ferromagnetic screening for the decay of the X-ray neutron star magnetic field in the binary accretion phase, the phase transition of ferromagnetic materials in the crust of neutron star induces the ferromagnetic screening saturation of the accreted crust, which results in the minimum surface magnetic field of the accreting neutron star, about 108 G, if the accreted matter has completely replaced the crust mass of the neutron star. The magnetic field evolution versus accreted mass is given as Bs ∝ ΔM-0.9, and the obtained magnetic field versus spin period relation is consistent with the distribution of the binary X-ray sources and recycled pulsars. The further thermal effect on the magnetic evolution is also studied.
Resumo:
Austenitic stainless steel presents phase changes caused by heat treatment and welding processes. Because it represents a problem in the design of high-homogeneity magnets, we have been studying the magnetic properties of Ti alloys for their use instead of stainless steel as structural material for superconducting magnet construction. In this work, we present the comparative study of the influence of magnetic properties of steel and Ti alloys on the magnetic-field homogeneity of a superconducting coil through numerical calculation using the measured magnetic properties. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
We investigate theoretically a ferrofluid in the presence of a rotating magnetic field using a phenomenological approach based on a equation of motion for the magnetization. We verify that the heating rates of the system display a heat transfer between the host liquid and the magnetic nanoparticles (MNPs), with symmetric profiles dependent on the vorticity value. As a result, the total heating rate reveals a magnetovortical antiresonance and characterizes the suppression of the dissipation. © 2012 Springer Science+Business Media, LLC.
Resumo:
Using a genuinely tridimensional approach to the time-dependent Ginzburg-Landau theory, we have studied the local magnetic field profile of a mesoscopic superconductor in the so-called SQUID geometry, i.e., a square with a hole at the center connected to the outside vacuum through a very thin slit. Our investigation was carried out in both the Meissner and the mixed state. We have also studied the influence of the temperature on the space distribution of the local magnetic field. © 2013 IOP Publishing Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A comparison between experimental measurements and numerical calculations of the ion current distribution in plasma immersion ion implantation (PIII) with external magnetic field is presented. Later, Silicon samples were implanted with nitrogen ion to analyze the effect on them. The magnetic field considered is essentially non-uniform and is generated by two magnetic coils installed on vacuum chamber. The presence of both, electric and magnetic field in PIII create a crossed ExB field system, promoting drift velocity of the plasma around the target. The results found shows that magnetized electrons drifting in ExB field provide electron-neutral collision. The efficient ionization increases the plasma density around the target where a magnetic confinement is formed. As result, the ion current density increases, promoting significant changes in the samples surface properties, especially in the surface wettability.