961 resultados para ANGLE NEUTRON-SCATTERING
Resumo:
Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.
Resumo:
The structural evolution of high-density polyethylene subjected to uniaxial tensile deformation was investigated as a function of strain and after annealing at different temperatures using a scanning synchrotron small-angle X-ray scattering (SAXS) technique. The results confirm that in the course of tensile deformation intralamellar block slips were activated at small deformations followed by a stress-induced fragmentation and recrystallization process yielding thinner lamellae with their normal parallel to the stretching direction. The original sheared lamellae underwent severe internal deformation so that they were even less stable than the newly developed thinner lamellae. Accordingly, annealing results in a melting of the original crystallites even at moderate strains where the stress-induced fragmentation and recrystallization just sets in and generates a distinctly different form of lamellar stacks aligned along the drawing direction. It was found that the lamellae newly formed during stretching at moderate strains remain stable at lower temperature. Only at a very high annealing temperature of 120 degrees C can they be melted, leading to an isotropic distribution of the lamellar structure.
Resumo:
The instrumental spreading of a high temperature gel permeation chromatograph (GPC) was evaluated by coupling with a two-angle laser light scattering (TALLS) detector, using narrow polystyrene, polyethylene, and syndiotactic polypropylene samples. The determined spreading factor increased with increasing molecular weight of polymers, and no maximum for spreading 174 tor was observed in the studied retention volume, while the spreading factors for single low molecular weight alkanes are independent of their molecular weight. Neglecting of the spreading effect for GPC would not introduce much error in molecular weight calculation when high quality high performance columns were used, especially when equipped with a laser light scattering detector. The scaling relationship between radius of gyration and molecular weight of polymer, determined by GPC with a TALLS detector, was independent of the instrumental spreading.
Resumo:
The structural parameters of the aggregated state in the polyamide PA1010 and N,N'-bismaleimide-4,4'-diphenyl methane (BMI) system were computed by means of the desmearing intensity from SAXS and using the concept of the distance distribution function. The results revealed that the parameters Q, I(0), l(c) and L decreased with the increase BMI component, whereas O-s increased. The particle dimension Z for different BMI contents was less than 13.2 nm, and the maximum value of the distance distribution function P(Z) was found to be in the range Z = 6.5-7.0 nm.
Resumo:
The interface thickness in two triblock copolymers were determined using small-angle x-ray scattering in the context of the theory proposed by Ruland. The thickness was found to be nonexistent for the samples at three different temperatures. By viewing th
Resumo:
R Winter, D Le Messurier, CM Martin; Cryst Rev 12 (2006) 3 Sponsorship: EPSRC, CCLRC, Pilkington