974 resultados para AMPA RECEPTOR SUBUNITS
Resumo:
Our laboratory has previously found that anti-mitogenic nuclear receptor mRNA is elevated in late stage tumours and this study was performed to scrutinize the possibility of cancer-stroma crosstalk using hormone signaling in these tissues. RNA levels in stromal tissue were examined for the estrogen α, estrogen β, androgen, progesterone and glucocorticoid nuclear receptors by a semi-quantitative PCR. Significant differences in expression between the cancer stroma and control tissue were seen, analyzing for both cancer grade and estrogen receptor status. Stroma and control tissue were significantly different for the progesterone and glucocorticoid nuclear receptors (p = 5.908 × 10−7 and 2.761 × 10−5, respectively). Glucocorticoid receptor also showed a significant increase to mRNA levels in the stroma of estrogen receptor negative tumours (p = 5.85 × 10−5). By contrast, the estrogen receptors α and β, those most closely associated with breast tissue growth, showed no significant change in mRNA (p = 0.372 and 0.655, respectively). Androgen receptor mRNA also remained unaffected (p = 0.174).
Resumo:
Previous studies in our laboratory have shown association of nuclear receptor expression and histological breast cancer grade. To further investigate these findings, it was the objective of this study to determine if expression levels of the estrogen alpha, estrogen beta and androgen nuclear receptor genes varied in different breast cancer grades. RNA extracted from paraffin embedded archival breast tumour tissue was converted into cDNA and cDNA underwent PCR to enable quantitation of mRNA expression. Expression data was normalised against the 18S ribosomal gene multiplex and analysed using ANOVA. Analysis indicated a significant alteration of expression for the androgen receptor in different cancer grades (P=0.014), as well as in tissues that no longer possess estrogen receptor alpha proteins (P=0.025). However, expression of estrogen receptors alpha and beta did not vary significantly with cancer grade (P=0.057 and 0.622, respectively). Also, the expression of estrogen receptor alpha or beta did not change, regardless of the presence of estrogen receptor alpha protein in the tissue (P=0.794 and 0.716, respectively). Post-hoc tests indicate that the expression of the androgen receptor is increased in estrogen receptor negative tissue as well as in grade 2 and grade 3 tumours, compared to control tissue. This increased expression in late stage breast tumours may have implications to the treatment of breast tumours, particularly those lacking expression of other nuclear receptor genes.
Resumo:
Background We have previously reported an association between the estrogen receptor 1 (ESR1) gene exon 8 G594A polymorphism and migraine susceptibility in two independent Australian cohorts. In this paper we report results of analysis of two further single nucleotide polymorphisms (SNPs) in the ESR1 gene in the same study group, the T/C Pvu II SNP in intron 1 and the C325G SNP in exon 4, as well as results of linkage disequilibrium (LD) analysis on these markers. Methods We investigated these variants by case-control association analysis in a cohort of 240 migraineurs and 240 matched controls. The SNPs were genotyped using specific restriction enzyme assays. Results were analysed using contingency table methods incorporating the chi-squared statistic. LD results are presented as D' statistics with associated P values. Results We found no evidence for association of the Pvu II T/C polymorphism and the C325G polymorphism and migraine susceptibility and no evidence for LD between these two SNPs and the previously implicated exon 8 G594A marker. Conclusion We have found no role for the polymorphisms in intron 1 and exon 4 with migraine susceptibility. To further investigate our previously implicated exon 8 marker, we suggest the need for studies with a high density of polymorphisms be undertaken, with particular focus on markers in LD with the exon 8 marker.
Resumo:
Migraine is a common neurological condition with a complex mode of inheritance. Steroid hormones have long been implicated in migraine, although their role remains unclear. Our investigation considered that genes involved in hormonal pathways may play a role in migraine susceptibility. We therefore investigated the androgen receptor (AR) CAG repeat, and the progesterone receptor (PR) PROGINS insert by cross-sectional association analysis. The results showed no association with the AR CAG repeat in our study group of 275 migraineurs and 275 unrelated controls. Results of the PR PROGINS analysis showed a significant difference in the same cohort, and in an independent follow-up study population of 300 migraineurs and 300 unrelated controls. Analysis of the genotypic risk groups of both populations together indicated that individuals who carried the PROGINS insert were 1.8 times more likely to suffer migraine. Interaction analysis of the PROGINS variant with our previously reported associated ESR1 594A variant showed that individuals who possessed at least one copy of both risk alleles were 3.2 times more likely to suffer migraine. Hence, variants of these steroid hormone receptor genes appear to act synergistically to increase the risk of migraine by a factor of three.
Resumo:
Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) resulting in accumulating neurological disability. The disorder is more prevalent at higher latitudes. To investigate VDR gene variation using three intragenic restriction fragment length polymorphisms (Apa I, Taq I and Fok I) in an Australian MS case-control population. One hundred and four Australian MS patients were studied with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 104 age-, sex-, and ethnicity-matched controls were investigated as a comparative group. Our results show a significant difference of genotype distribution frequency between the case and control groups for the functional exon 9 VDR marker Taq I (p(Gen) = 0.016) and interestingly, a stronger difference for the allelic frequency (p(All) = 0.0072). The Apa I alleles were also found to be associated with MS (p(All) = 0.04) but genotype frequencies were not significantly different from controls (p(Gen) = 0.1). The Taq and Apa variants are in very strong and significant linkage disequilibrium (D' = 0.96, P < 0.0001). The genotypic associations are strongest for the progressive forms of MS (SP-MS and PP-MS). Our results support a role for the VDR gene increasing the risk of developing multiple sclerosis, particularly the progressive clinical subtypes of MS.
Resumo:
Adenosine is an important cardioprotective agent that works via several adenosine receptor (ADOR) subtypes to regulate cardiovascular activity. It is well established that functional responses to adenosine decline with age. What is unclear, though, is whether these changes occur at the receptor, second messenger or translational level. In this study we determined the effect of age on cardiac adenosine receptor expression using the housekeeping gene 18S rRNA versus the adenosine A2B receptor gene as internal controls. Absolute quantification showed that no age-related changes occurred in the expression of 18S rRNA or adenosine A2B receptor internal control genes. Subsequently, relative analysis of the adenosine receptor subtypes using 18S rRNA found a significant age-related reduction in the expression of the adenosine A1 receptor (5.5-fold), with no changes in the expression of the adenosine A2A, A2B and A3 receptors. When using the expression of the adenosine A2B receptor as the internal control gene, a significant down regulation of both the adenosine A1 (5.4-fold) and A2A (2.2-fold) receptors with no change in the expression of adenosine A3 receptor was found. Therefore, the high level of expression of the 18S rRNA housekeeping gene was found to mask a significant change in expression of the adenosine A2A receptor with age. Ultimately, these findings show an age-related reduction in adenosine A1 and A2A receptor expression in rat heart.
Resumo:
The Low-Density Lipoprotein Receptor (LDLR) gene is a cell surface receptor that plays an important role in cholesterol homeostasis. We investigated the (TA)n polymorphism in exon 18 of the LDLR gene on chromosome 19p13.2 performing an association analysis in 244 typical migraine-affected patients, 151 suffering from migraine with aura (MA), 96 with migraine without aura (MO) and 244 unaffected controls. The populations consisted of Caucasians only, and controls were age- and sex-matched. The results showed no significant difference between groups for allele frequency distributions of the (TA)n polymorphism even after separation of the migraine-affected individuals into subgroups of MA and MO affected patients. This is in contradiction to Mochi et al. who found a positive association of this variant with MO. Our study discusses possible differences between the two studies and extends this research by investigating circulating cholesterol levels in a migraine-affected population.
Resumo:
Migraine is a painful and debilitating disorder with a significant genetic component. Steroid hormones, in particular estrogen, have long been considered to play a role in migraine, as variations in hormone levels are associated with migraine onset in many sufferers of the disorder. Steroid hormones mediate their activity via hormone receptors, which have a wide tissue distribution. Estrogen receptors have been localized to the brain in regions considered to be involved in migraine pathogenesis. Hence it is possible that genetic variation in the estrogen receptor gene may play a role in migraine susceptibility. This study thus examined the estrogen receptor 1 (ESRα) gene for a potential role in migraine pathogenesis and susceptibility. A population-based cohort of 224 migraine sufferers and 224 matched controls were genotyped for the G594A polymorphism located in exon 8 of the ESR1 gene. Statistical analysis indicated a significant difference between migraineurs and non-migraineurs in both the allele frequencies (P=0.003) and genotype distributions (P=0.008) in this sample. An independent follow-up study was then undertaken using this marker in an additional population-based cohort of 260 migraine sufferers and 260 matched controls. This resulted in a significant association between the two groups with regard to allele frequencies (P=8×10−6) and genotype distributions (P=4×10−5). Our findings support the hypothesis that genetic variation in hormone receptors, in particular the ESR1 gene, may play a role in migraine.
Resumo:
In our laboratory we have developed a quantitative-polymerase chain reaction (Q-PCR) strategy to examine the differential expression of adenosine receptor (ADOR), A(1), A(2A), A(2B) and A(3), and estrogen receptors (ER) alpha and beta. Brain and uterine mRNA were first used to optimise specific amplification conditions prior to SYBR Green I real time analysis of receptor subtype expression. SYBR Green I provided a convenient and sensitive means of examining specific PCR amplification product in real time, and allowed the generation of standard curves from which relative receptor abundance could be determined. Real time Q-PCR analysis was then performed, to examine changes in receptor expression levels in brains of adult female Wistar rats 3-month post ovariectomy. Comparison with sham-operated age-matched control rats demonstrated both comparative and absolute-copy number changes in receptor levels. Evaluation of both analytical methods investigated 18S rRNA as an internal reference for comparative gene expression analysis in the brain. The results of this study revealed preferential repression of ADORA(2A) (>4-fold down) and consistent (>2-fold) down-regulation of ADORA(1), ADORA(3), and ER-beta, following ovariectomy. No change was found in ADORA(2B) or ER-alpha. Analysis of absolute copy number in this study revealed a correlation between receptor expression in response to ovariectomy, and relative receptor subtype abundance in the brain.
Resumo:
OBJECTIVE: To investigate the role of the dopamine receptor genes, DRD1, DRD3, and DRD5 in the pathogenesis of migraine. BACKGROUND: Migraine is a chronic debilitating disorder affecting approximately 12% of the white population. The disease shows strong familial aggregation and presumably has a genetic basis, but at present, the type and number of genes involved is unclear. The study of candidate genes can prove useful in the identification of genes involved in complex diseases such as migraine, especially if the contribution of the gene to phenotypic expression is minor. Genes coding for proteins involved in dopamine metabolism have been implicated in a number of neurologic conditions and may play a contributory role in migraine. Hence, genes that code for enzymes and receptors modulating dopaminergic activity are good candidates for investigation of the molecular genetic basis of migraine. METHODS: We tested 275 migraineurs and 275 age- and sex-matched individuals free of migraine. Genotypic results were determined by restriction endonuclease digestion of polymerase chain reaction products to detect DRD1 and DRD3 alleles and by Genescan analysis after polymerase chain reaction using fluorescently labelled oligonucleotide primers for the DRD5 marker. RESULTS: Results of chi-square statistical analyses indicated that the allele distribution for migraine cases compared to controls was not significantly different for any of the three tested gene markers (chi2 = 0.1, P =.74 for DRD1; chi2 = 1.8, P =.18 for DRD3; and chi2 = 20.3, P =.08 for DRD5). CONCLUSIONS: These findings offer no evidence for allelic association between the tested dopamine receptor gene polymorphisms and the more prevalent forms of migraine and, therefore, do not support a role for these genes in the pathogenesis of the disorder.
Resumo:
The presence of somatostatin receptors (SSTR1-5) in tumour cells indicates a potential for somatostatin to bind and suppress growth, as well as allowing for therapeutic treatment with somatostatin analogues. The genes for SSTR1 and SSTR2 have been shown to contain dinucleotide repeat polymorphisms. We have performed association studies on breast cancer and solar keratosis populations to determine whether these genes play a role in the development of these conditions. Results showed that there was no significant difference between SSTR1 and SSTR2 polymorphism frequencies in the tested breast cancer population (P = 0.59 and P = 0.54, respectively) nor the solar keratosis population (P = 0.10 and P = 0.883, respectively) as compared to unaffected populations. Hence, these studies do not support a role for these receptor genes in either breast cancer or solar keratosis lesions.
Resumo:
We have utilized a cross-sectional association approach to investigate sporadic breast cancer. Polymorphisms in 2 candidate genes, ESRalpha and GRL, were examined in an unrelated breast cancer-affected and age-matched control population. Several polymorphic regions within the ESRalpha gene have been identified, and some alleles of these polymorphisms have been found to occur at increased levels in breast-cancer patients. Additionally, variations in GRL have the potential to disrupt cell transcription and may be associated with cancer formation. We analyzed 3 polymorphisms, from codons 10 (TCT to TCC), 325 (CCC to CCG) and 594 (ACA to ACG) of ESRalpha, and a highly polymorphic dinucleotide repeat, D5S207, located within 200 kb of the GRL. When allelic frequencies of the codon 594 (exon 8) ESR polymorphism were compared between affected and unaffected populations, a significant difference was observed (p = 0.005). Results from the D5S207 dinucleotide repeat located near GRL also indicated a significant difference between the tested case and control populations (p = 0.001). Allelic frequencies of the codon 10 and codon 325 ESR polymorphisms were not significantly different between populations (p = 0.152 and 0.181, respectively). Our results indicate that specific alleles of the ESR gene (alpha subtype) and a marker for the GRL gene locus are associated with sporadic breast-cancer development in the tested Caucasian population and justify further investigation of the role of these and other nuclear steroid receptors in the etiology of breast cancer.
Resumo:
We have identified a migraine locus on chromosome 19p13.3/2 using linkage and association analysis. We isolated 48 single-nucleotide polymorphisms within the locus, of which we genotyped 24 in a Caucasian population comprising 827 unrelated cases and 765 controls. Five single-nucleotide polymorphisms within the insulin receptor gene showed significant association with migraine. This association was independently replicated in a case-control population collected separately. We used experiments with insulin receptor RNA and protein to investigate functionality for the migraine-associated single-nucleotide polymorphisms. We suggest possible functions for the insulin receptor in migraine pathogenesis.
Resumo:
MC1R gene variants have previously been associated with red hair and fair skin color, moreover skin ultraviolet sensitivity and a strong association with melanoma has been demonstrated for three variant alleles that are active in influencing pigmentation: Arg151Cys, Arg160Trp, and Asp294His. This study has confirmed these pigmentary associations with MC1R genotype in a collection of 220 individuals drawn from the Nambour community in Queensland, Australia, 111 of whom were at high risk and 109 at low risk of basal cell carcinoma and squamous cell carcinoma. Comparative allele frequencies for nine MC1R variants that have been reported in the Caucasian population were determined for these two groups, and an association between prevalence of basal cell carcinoma, squamous cell carcinoma, solar keratosis and the same three active MC1R variant alleles was demonstrated [odds ratio = 3.15 95% CI (1.7, 5.82)]. Three other commonly occurring variant alleles: Val60Leu, Val92Met, and Arg163Gln were identified as having a minimal impact on pigmentation phenotype as well as basal cell carcinoma and squamous cell carcinoma risk. A significant heterozygote effect was demonstrated where individuals carrying a single MC1R variant allele were more likely to have fair and sun sensitive skin as well as carriage of a solar lesion when compared with those individuals with a consensus MC1R genotype. After adjusting for the effects of pigmentation on the association between MC1R variant alleles and basal cell carcinoma and squamous cell carcinoma risk, the association persisted, confirming that presence of at least one variant allele remains informative in terms of predicting risk for developing a solar-induced skin lesion beyond that information wained through observation of pigmentation phenotype.
Resumo:
Breast cancer is the leading cause of cancer death among Australian women and its incidence is annually increasing. Genetic factors are involved in the complex etiology of breast cancer. The seco-steroid hormone, 1.25 dihydroxy vitamin D3 can influence breast cancer cell growth in vitro. A number of studies have reported correlations between vitamin D receptor (VDR) gene polymorphisms and several diseases including prostate cancer and osteoporosis. In breast cancer, low vitamin D levels in serum are correlated with disease progression and bone metastases, a situation also noted in prostate cancer and suggesting the involvement of the VDR. In our study, 2 restriction fragment length polymorphisms (RFLP) in the 3' region (detected by Apa1 and Taq1) and an initiation codon variant in the 5' end of the VDR gene (detected by Fok1) were tested for association with breast cancer risk in 135 females with sporadic breast cancer and 110 cancer-free female controls. Allele frequencies of the 3' Apa1 polymorphism showed a significant association (p = 0.016; OR = 1.56, 95% CI = 1.09-2.24) while the Taq1 RFLP showed a similar trend (p = 0.053; OR = 1.45, 95% CI = 1.00-2.00). Allele frequencies of the Fok1 polymorphism were not significantly different (p = 0.97; OR = 0.99, 95% CI = 0.69-1.43) in the study population. Our results suggest that specific alleles of the VDR gene located near the 3' region may identify an increased risk for breast cancer and justify further investigation of the role of VDR in breast cancer.